K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có

AD chung

AH=AE

=>ΔAHD=ΔAED

b: ΔAHD=ΔAED

=>DH=DE

mà DE<DC

nên DH<DC

c: Xét ΔDHK vuông tại H và ΔDEC vuông tại E có

DH=DE

góc HDK=góc EDC

=>ΔDHK=ΔDEC 

=>DK=DC

=>ΔDKC cân tại D

d: AH+HK=AK

AE+EC=AC

mà AH=AE và HK=EC

nên AK=AC

mà DK=DC

nên AD là trung trực của KC

mà M là trung điểm của CK

nên A,D,M thẳng hàng

27 tháng 2 2020

a, xét tam giác ABC và tam giác DBE có : góc B chung

AB = BD (Gt)

góc BAC = góc BDE = 90

=> tam giác ABC = tam giác DBE (cgv-gnk)

b, xét tam giác ABH và tam giác DBH có : BH chung

AB = BD (Gt)

góc HAB = góc HDB = 90 

=> tam giác ABH = tam giác DBH (ch-cgv)

=> góc ABH = góc DBH (đn) mà BH nằm giữa AB và BD

=> BH là pg của góc ABC (đn)

c, AB = BD (gt) có BD = 6 (gt)

=> AB = 6 

BD + DC = BC 

BD = 6; CD = 4

=> BC =10

tam giác ABC vuông tại A (Gt)

=> BC^2 = AB^2 + AC^2

=> AC^2 = 10^2 - 6^2

=> AC^2 = 64

=> AC = 8 do AC > 0

`a,`

Xét `2 \Delta` vuông `AHD` và ` AED`:

\(\text{AD chung}\)

\(\text{AH = AE (gt)}\)

`=> \Delta AHD = \Delta AED (ch-cgv)`

`b,`

Vì `\Delta AHD = \Delta AED (a)`

`->`\(\text{DH = DE (2 cạnh tương ứng) (1)}\)

\(\text{Xét }\Delta\text{DEC :}\)

\(\widehat{\text{DEC}}=90^0\)

`@` Theo định lý quan hệ giữa góc và cạnh đối diện

`->`\(\text{DC là cạnh lớn nhất}\)

`->`\(\text{DC > DE (2)}\)

Từ \(\left(1\right)\) và \(\left(2\right)\)

`->`\(\text{DC > DH.}\)

`c,` cho mình bỏ câu này;-;;; xin lỗi cậu nhiều;-;.

loading...