K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 4 2019

\(\frac{x^3}{y}+xy\ge2x^2\); \(\frac{y^3}{z}+yz\ge2y^2\); \(\frac{z^3}{x}+xz\ge2z^2\)

\(\Rightarrow\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}+xy+xz+yz\ge2\left(x^2+y^2+z^2\right)\)

Mặt khác ta có BĐT: \(x^2+y^2+z^2\ge xy+xz+yz\)

\(\Rightarrow\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}+xy+xz+yz\ge2\left(xy+xz+yz\right)\)

\(\Rightarrow\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge xy+xz+yz\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z\)

26 tháng 8 2017

Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 

Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 

Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 

Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 

Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 

Từ (1) và (2) suy ra a và b đều là số chẵn 

Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 

Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 

Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 

Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)

đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\Leftrightarrow ab+bc+ca\ge\frac{3}{4}\)

áp dụng bđt holder ta có:

\(\left(a^3+b^3+c^3\right)\left(b^3+c^3+a^3\right)\left(1+1+1\right)\ge\left(ab+bc+ca\right)^3\)

\(\Leftrightarrow3\left(a^3+b^3+c^3\right)^2\ge\frac{27}{64}\)

\(\Leftrightarrow a^3+b^3+c^3\ge\frac{3}{8}\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\ge\frac{3}{8}\left(Q.E.D\right)\)

NV
17 tháng 6 2020

\(P=\frac{1}{x^2+y^2+z^2}+\frac{2009}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}+\frac{1}{xy+yz+zx}+\frac{2007}{xy+yz+zx}\)

\(P\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}+\frac{2007}{\frac{1}{3}\left(x+y+z\right)^2}\)

\(P\ge\frac{9}{\left(x+y+z\right)^2}+\frac{6021}{\left(x+y+z\right)^2}=\frac{6030}{\left(x+y+z\right)^2}\ge\frac{6030}{3^2}=670\)

Dấu "=" xảy ra khi \(x=y=z=1\)

16 tháng 6 2020

Áp dụng BĐT Côsi dưới dạng engel, ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge\left(x+y+z\right).\frac{9}{x+y+z}\) = 9

Dấu "=" xảy ra ⇔ x = y = z

7 tháng 6 2021

Vì xy + yz + zx = 1 ta có : 

\(\frac{x-y}{z^2+1}+\frac{y-z}{x^2+1}+\frac{z-x}{y^2+1}=\frac{x-y}{z^2+xy+yz+zx}+\frac{y-z}{x^2+xy+yz+zx}+\frac{z-x}{y^2+xy+yz+zx}\)

\(=\frac{x-y}{\left(y+z\right)\left(z+x\right)}+\frac{y-z}{\left(x+y\right)\left(x+z\right)}+\frac{z-x}{\left(y+z\right)\left(x+y\right)}\)

\(=\frac{\left(x-y\right)\left(x+y\right)+\left(y-z\right)\left(y+z\right)+\left(x+z\right)\left(z-x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\frac{x^2-y^2+y^2-z^2+z^2-x^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{0}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=0\)(ĐPCM) 

AH
Akai Haruma
Giáo viên
9 tháng 7 2020

Lời giải:

$xy+yz+xz=3xyz$

$\Leftrightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3$

Đặt $\left(\frac{1}{x}, \frac{1}{y}, \frac{1}{z}\right)=(a,b,c)$ thì bài toán trở thành:

Cho $a,b,c>0$ thỏa mãn $a+b+c=3$. CMR $\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\geq a^2+b^2+c^2$

---------------------------------

Thật vậy:

Áp dụng BĐT AM-GM ta có:

$\frac{1}{a^2}+\frac{1}{b^2}\geq \frac{2}{ab}$

$\frac{1}{b^2}+\frac{1}{c^2}\geq \frac{2}{bc}$

$\frac{1}{c^2}+\frac{1}{a^2}\geq \frac{2}{ac}$

Cộng theo vế và thu gọn: $\sum \frac{1}{a^2}\geq \sum \frac{1}{ab}=\frac{a+b+c}{abc}=\frac{3}{abc}$

Ta cần chứng minh $\frac{3}{abc}\geq a^2+b^2+c^2$ thì bài toán sẽ được chứng minh.

$\Leftrightarrow abc(a^2+b^2+c^2)\leq 3(*)$

Theo hệ quả BĐT AM-GM: $3abc=abc(a+b+c)\leq \frac{(ab+bc+ac)^2}{3}$

$\Rightarrow abc\leq \frac{(ab+bc+ac)^2}{9}$

$\Rightarrow abc(a^2+b^2+c^2)\leq \frac{(a^2+b^2+c^2)(ab+bc+ac)^2}{9}$

Mà:

$(a^2+b^2+c^2)(ab+bc+ac)^2\leq \left(\frac{a^2+b^2+c^2+ab+bc+ac+ab+bc+ac}{3}\right)^3=\frac{(a+b+c)^6}{27}=27$ theo AM-GM

Do đó: $abc(a^2+b^2+c^2)\leq \frac{27}{9}=3$. BĐT $(*)$ được CM

Do đó ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$ hay $x=y=z=1$

AH
Akai Haruma
Giáo viên
29 tháng 7 2020

Lời giải:

Áp dụng BĐT AM-GM cho các số dương ta có:

$\frac{x^3}{x+1}+\frac{x(x+1)}{4}\geq x^2$

$\frac{y^3}{y+1}+\frac{y(y+1)}{4}\geq y^2$

$\frac{z^3}{z+1}+\frac{z(z+1)}{4}\geq z^2$

Cộng theo vế và thu gọn: $P\geq \frac{3(x^2+y^2+z^2)-(x+y+z)}{4}$

Cũng theo BĐT AM-GM: $(x+y+z)^2\leq 3(x^2+y^2+z^2)\Rightarrow x+y+z\leq \sqrt{3(x^2+y^2+z^2)}$

$\Rightarrow 3(x^2+y^2+z^2)-(x+y+z)\geq 3(x^2+y^2+z^2)-\sqrt{3(x^2+y^2+z^2)}=t^2-t$ với $t=\sqrt{3(x^2+y^2+z^2)}\geq \sqrt{3(xy+yz+xz)}\geq 3$

Dễ thấy $t^2-t=t(t-3)+2(t-3)+6=(t+2)(t-3)+6\geq 6$ với $t\geq 3$

Do đó $P\geq \frac{3(x^2+y^2+z^2)-(x+y+z)}{4}\geq \frac{6}{4}=\frac{3}{2}$

Vậy $P_{\min}=\frac{3}{2}$. Dấu "=" xảy ra khi $x=y=z=1$