Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(A=\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right)\left(\dfrac{9-x}{x+\sqrt{x}-6}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\dfrac{x-3\sqrt{x}-x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\left(\dfrac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x+3}\right)}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\dfrac{-3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\left(\dfrac{3-\sqrt{x}+\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=-\dfrac{3}{\sqrt{x}+3}\cdot\left(-\dfrac{\sqrt{x}-2}{\sqrt{x+3}}\right)=\dfrac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)^2}\)
b/ A < 1
<=> \(\dfrac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)^2}< 1\)
\(\Leftrightarrow3\left(\sqrt{x}-2\right)< \left(\sqrt{x}+3\right)^2\)
\(\Leftrightarrow3\sqrt{x}-6< x+6\sqrt{x}+9\)
\(\Leftrightarrow-x-3\sqrt{x}-15< 0\)
\(\Leftrightarrow x+3\sqrt{x}+15>0\) (luôn đúng)
=> A < 1 với mọi x >= 0
a/ \(P=\left[1-\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]:\left[\frac{3-\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}-2}{\sqrt{x}+3}-\frac{9x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]\)
\(=\left(1-\frac{\sqrt{x}}{\sqrt{x}+3}\right):\left[\frac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)+\left(\sqrt{x}-2\right)^2-9x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]\)
\(=\left(\frac{\sqrt{x}+3-\sqrt{x}}{\sqrt{x}+3}\right):\left[\frac{9-x+x-4\sqrt{x}+4-9x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]\)
\(=\frac{3}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{13-4\sqrt{x}-9x}\)
\(=\frac{3\sqrt{x}-6}{13-4\sqrt{x}-9x}\)
b/ \(P=1\Rightarrow\frac{3\sqrt{x}-6}{13-4\sqrt{x}-9x}=1\Rightarrow3\sqrt{x}-6=13-4\sqrt{x}-9x\)
\(\Rightarrow9x+7\sqrt{x}-19=0\)
Mình k biết mình sai chỗ nào nữa, bạn xem giúp mình với
a: \(A=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{2\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}\)
\(=\dfrac{-6}{\sqrt{x}+3}\)
b: Để A<-1/2 thì A+1/2<0
\(\Leftrightarrow-\dfrac{6}{\sqrt{x}+3}+\dfrac{1}{2}< 0\)
\(\Leftrightarrow-12+\sqrt{x}+3< 0\)
=>0<x<81 và x<>9
a: \(A=\dfrac{\sqrt{3}+1}{\sqrt{3}+1}+\sqrt{5}+3-3-\sqrt{5}=1\)
b: \(B=\dfrac{-\sqrt{x}-3+x-3\sqrt{x}-x-9}{x-9}=\dfrac{-4\sqrt{x}-12}{x-9}=\dfrac{-4}{\sqrt{x}-3}\)
Để B>1 thì \(\dfrac{-4-\sqrt{x}+3}{\sqrt{x}-3}>0\)
\(\Leftrightarrow\sqrt{x}-3< 0\)
hay 0<x<9
a: \(P=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\cdot\dfrac{\sqrt{x}-7+\sqrt{x}+1}{\sqrt{x}+1}\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\cdot\dfrac{2\sqrt{x}-6}{\sqrt{x}+1}\)
\(=\dfrac{-3\sqrt{x}-3}{\sqrt{x}+1}\cdot\dfrac{2}{\sqrt{x}+3}=-\dfrac{6}{\sqrt{x}+3}\)
b: P>=-1/2
=>P+1/2>=0
=>\(\dfrac{-6}{\sqrt{x}+3}+\dfrac{1}{2}>=0\)
=>\(\dfrac{-12+\sqrt{x}+3}{2\left(\sqrt{x}+3\right)}>=0\)
=>căn x-9>=0
=>x>=81
c: căn x+3>=3
=>6/căn x+3<=6/3=2
=>-6/căn x+3>=-2
Dấu = xảy ra khi x=0
a, Với \(x>0;x\ne4;x\ne9\)
\(A=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
\(=\left(\frac{4\sqrt{x}\left(2-\sqrt{x}\right)+8x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
\(=\left(\frac{8\sqrt{x}-4x+8x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
\(=\frac{8\sqrt{x}+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}:\frac{-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\frac{4\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\frac{3-\sqrt{x}}{\sqrt{x}\left(2-\sqrt{x}\right)}=\frac{4\sqrt{x}}{2-\sqrt{x}}.\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{3-\sqrt{x}}=\frac{4x}{3-\sqrt{x}}\)
b, Ta có : A = -2 hay
\(\frac{4x}{3-\sqrt{x}}=-2\Rightarrow4x=-6+2\sqrt{x}\)
\(\Leftrightarrow4x+6-2\sqrt{x}=0\Leftrightarrow2\left(2x+3-\sqrt{x}\right)=0\)
\(\Leftrightarrow2x+3-\sqrt{x}=0\Leftrightarrow\sqrt{x}=2x+3\)
bình phương 2 vế ta có :
\(x=\left(2x+3\right)^2=4x^2+12x+9\)
\(\Leftrightarrow-4x^2-11x-9=0\)giải delta ta thu được : \(x=-\frac{11\pm\sqrt{23}i}{8}\)
\(a,A=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
\(=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{2}{\sqrt{x}}\right)\)
\(=\frac{4\sqrt{x}.\left(2-\sqrt{x}\right)+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\frac{\sqrt{x}-1-2.\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\frac{8\sqrt{x}-4x+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}-1-2\sqrt{x}+4}\)
\(=\frac{\left(4x+8\sqrt{x}\right)\left(\sqrt{x}\right)\left(\sqrt{x}-2\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)\left(-\sqrt{x}+3\right)}\)
\(=\frac{-4\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}\right)\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)\left(-\sqrt{x}+3\right)}\)
\(=\frac{4x}{\sqrt{x}-3}\)
a) Ta có:
\(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\left(\frac{2\sqrt{x}\left(\sqrt{x-3}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x-3}\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{3x+3}{x-9}\right):\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\left(\frac{2x-6}{x-9}+\frac{x+3\sqrt{x}}{x-9}-\frac{3x+3}{x-9}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{2x-6+x+3\sqrt{x}-3x-3}{x-9}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\)
b) \(P< \frac{-1}{2}\Rightarrow\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}< \frac{-1}{2}\)
.....Chưa nghĩ ra....
c) Ta có: \(\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-3=0\Rightarrow x=9\)
Vậy Min P = 0 khi x =9.
k - kb với tớ nhia mn!
a: Khi x=16 thì B=4+1=5
b: \(A=\dfrac{x+\sqrt{x}+10-\sqrt{x}-3}{x-9}\cdot\dfrac{\sqrt{x}-3}{1}=\dfrac{x+7}{\sqrt{x}+3}\)
Câu 1:
a: \(Q=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)
\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
b: Để Q>0 thì \(\sqrt{a}-2>0\)
=>a>4
a: \(Q=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)