K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2017

ta có 

n+1/n-3

= (n-3)+4/n-3

= 1 + 4/n-3

để A là p/số tối giản thì 

+) Ư CLN(4;n-3)=1

=> n= 2K + 1 ( K thuộc Z)

+) 4 chia hết n-3

=> n-3 thuộc Ư(4) 

=> n-3=1;4;2;-1;-2;-4

=> n=4;7;5;2;1;-1

có chi ko hiểu thì hỏi mik nha nhớ đó

7 tháng 2 2017

32/42

10 tháng 6 2017

\(A=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=\dfrac{n-3}{n-3}+\dfrac{4}{n-3}=1+\dfrac{4}{n-3}\)

Để A là p/s tối giản thì \(\dfrac{4}{n-3}\) phải là p/s tối giản

\(=>n-3\) là số lẻ \(\Leftrightarrow n\) là số chẵn

Vậy \(n=2k\left(k\in Z\right)\)

7 tháng 2 2017

33/12

7 tháng 2 2017

sao bạn đòi hỏi vậy

31 tháng 1 2016

1,Gọi UCLN(n+1,n+2)=d

Ta có:n+1 chia hết cho d

         n+2 chia hết cho d

=>(n+2)-(n+1) chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy \(\frac{n+1}{n+2}\)tối giản

5 tháng 2 2016

{-1;2;4;7} , ủng hộ mk nha

5 tháng 2 2016

van anh ta trình bày ra bn ơi

27 tháng 2 2017

\(A=\frac{n+1}{n-3}=\frac{\left(n-3\right)+4}{n-3}\)

Vì \(n-3⋮n-3\) . Để \(\frac{\left(n-3\right)+4}{n-3}\) là phân số tối giản <=> 4 không chia hết cho n - 3

\(\Rightarrow n-3\ne4k\) ( k thuộc N) \(\Rightarrow n\ne4k+3\)

Vậy với \(n\ne4k+3\) ( k thuộc N) thì \(A=\frac{n+1}{n-3}\) là phân số tối giản 

15 tháng 4 2017

\(A=\frac{n+1}{n-3}=\frac{\left(n-3\right)+4}{n-3}\)

Vì n - 3 \(⋮\)n - 3 nên \(\frac{\left(n-3\right)+4}{n-3}\)là phân số tối giản. Suy ra 4 không chia hết cho n -3

\(=>n-3\ne4k\left(k\in N\right)=>4k+3\)

Vậy \(n\ne4k+3\left(k\in N\right)=>A=\frac{n+1}{n-3}\)là phân số tối giản

Ủng hộ !