K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 13: Qua đỉnh A của hình vuông ABCD ta kẻ hai đường thẳng Ax, Ay vuông gócvới nhau. Ax cắt cạnh BC tại điểm P và cắt tia đối của tia CD tại điểm Q. Ay cắt tiađối của tia BC tại điểm R và cắt tia đối của tia DC tại điểm S.a) Chứng minh các tam giác APS, AQR là các tam giác cân.b) Gọi H là giao điểm của QR và PS; M, N theo thứ tự là trung điểm của QR, PS.Chứng minh tứ giác AMHN là hình chữ...
Đọc tiếp

Bài 13: Qua đỉnh A của hình vuông ABCD ta kẻ hai đường thẳng Ax, Ay vuông góc
với nhau. Ax cắt cạnh BC tại điểm P và cắt tia đối của tia CD tại điểm Q. Ay cắt tia
đối của tia BC tại điểm R và cắt tia đối của tia DC tại điểm S.
a) Chứng minh các tam giác APS, AQR là các tam giác cân.
b) Gọi H là giao điểm của QR và PS; M, N theo thứ tự là trung điểm của QR, PS.
Chứng minh tứ giác AMHN là hình chữ nhật.
Bài 14: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CA,
AD.
a) Tứ giác MNPQ là hình gì?
b) Gọi M là trung điểm của DB, AD=6, AB=8. Cho AM=1/2DB
. Tính QM.
Bài 15: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC.
a) Tứ giác BMNC là hình gì? Vì sao?
b) Lấy điểm E đối xứng với M qua N. Chứng minh tứ giác AECM là hình bình
hành.
c) Tứ giác BMEC là hình gì? Vì sao?
d) Tam giác ABC cần thêm điều kiện gì thì tứ giác AECM là hình vuông? Vẽ
hình minh hoạ.

0

Bài 1: 

a: Xét tứ giác AMCN có 

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

b: Ta có: AD⊥AC

mà AD//BC

nên BC⊥CA

=>ΔCBA vuông tại C

mà CM là đường trung tuyến

nên CM=MA

=>ΔMCA cân tại M

=>\(\widehat{MAC}=\widehat{MCA}\)

mà \(\widehat{MAC}=\widehat{DCA}\)

nên \(\widehat{MCA}=\widehat{DCA}\)

hay CA là tia phân giác của góc MCD

4 tháng 11 2016

Sai đề bạn ơi..

Sao lại là : " Gọi E ; F lần lượt là trung điểm của BF và CE " ????

bạn sửa lại đi

4 tháng 11 2016

Vì ABCD là hình chữ nhật (hcn) => EB=CD , AD=BC.

Mà E là trung diểm ( tđ) của AB , F là tđ của DC

=> AE=EB=DF=FC.

mà AB= 2AD ( giả thiết ( gt)) , AE=2AB , AB=DC

=>AD=AE

=> AEFD là hình vuông ( dấu hệu 1 SGK toán 8 trang 107).

b.chứng minh tương tự ta có ABCF là hình vuông.

Ta có 2 hình vuông (hv) AEFD và ABCF có cạnh chung là EF

=> hv AEFD = hv ABCF

Vì 2 hv trên = nhau => AF=FB=CE=DE( các đường chéo = nhau , cắt nhau tại trung điểm mỗi đường)

=> EM=MF=FN=EN              (1)

Trong hình vuông , 2 đường chéo vuông góc với nhau

=> EM vuông góc với AF

\(\Rightarrow\widehat{EMF}=90^o\)                 (2)

Từ (1) và (2) =>EMFN là hình vuông ( đpcm)

mk vẽ hình hơi xấu đó.

.. A B C D E F góc A , góc B , góc C , góc D là các góc vuông

21 tháng 4 2017

a) Tứ giác ADFE có AE // DF, AE = DF nên là hình bình hành.

Hình bình hành ADFE có góc A = 900 nên là hình chữ nhật.

Hình chữ nhật ADFE có AE = AD nên là hình vuông.

b) Tứ giác DEBF có EB // DF, EB = DF nên là hình bình hành.

Do đó DE // BF

Tương tự AF // EC

Suy ra EMFN là hình bình hành.

Theo câu a, ADFE là hình vuông nên ME = MF, ME ⊥ MF.

Hình bình hành EMFN có góc M = 900 nên là hình chữ nhật, lại có ME = MF nên là hình vuông.

9 tháng 8 2017

a) Tứ giác ADFE có AE // DF, AE = DF nên là hình bình hành.

Hình bình hành ADFE có ˆAA^ = 900 nên là hình chữ nhật.

Hình chữ nhật ADFE có AE = AD nên là hình vuông.

b) Tứ giác DEBF có EB // DF, EB = DF nên là hình bình hành.

Do đó DE // BF

Tương tự AF // EC

Suy ra EMFN là hình bình hành.

Theo câu a, ADFE là hình vuông nên ME = MF, ME ⊥ MF.

Hình bình hành EMFN có ˆMM^ = 900 nên là hình chữ nhật, lại có ME = MF nên là hình vuông