Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) a^2>0. Nếu a^2= (-).(-); (+).(+) thì ta có
th1: (+) . (+) = (+) Chọn (+)2 a^2>0
th2: (-). (-) = (+) Chọn (-)2 a^2>0
Vậy...
làm bổ sung cho câu b) là : muốn A có giá trị nhỏ nhất thì (x-8)2 phải có giá trị nhỏ nhất mà giá trị nhỏ nhất của (x-8)2 là 0
=) A có giá trị nhỏ nhất là -2018
c) : muốn B có giá trị lớn nhất thì -(x+5)2 phải có giá trị lớn nhất mà -(x+5)2 có giá trị lớn nhất là \(\infty\)mà không có số nào là số lớn nhất =) B vẫn chỉ có giá trị lớn nhất là \(\infty\)
1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy GTNN của A = -8 khi x=0, y=2.
b) Ta có: \(B=|x-3|+|x-7|\)
\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)
Vậy GTNN của B = 4 khi \(3\le x\le7\)
2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)
\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)
b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)
Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:
\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)
Bài 3: đề không rõ.
Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)
Có \(x^4\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow A\ge0+0-8=-8\)
Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)
\(b,B=\left|x-3\right|+\left|x-7\right|\)
\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)
\(\Rightarrow B\ge\left|x-3+7-x\right|\)
\(\Rightarrow B\ge\left|-10\right|=10\)
Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)
a) muốn A đạt giá trị lớn nhất thì /x-5/ đạt giá trị nhỏ nhât
mà /x-5/ đạt giá trị nhỏ nhất bằng 0
suy ra giá trị lớn nhất của A là 1000 khi x=5
b) muốn B đạt giá trị nhỏ nhất t hì /y-3/ đạt già trị nhỏ nhất
mà /y-3/ đạt giá trị nhỏ nhất bằng 0
suy ra giá trị nhỏ nhất của B bằng 50 khi y=3
c) muốn C đạt giá trị nhỏ nhất thì /x-100/ và /y+200/ đạt giá trị nhỏ nhất
mà /x-100/ đạt giá trị nhỏ nhất bằng 0
/y+200/ đạt giá trị nhỏ nhất bằng 0
suy ra giá trị nhỏ nhất của C bằng -1 khi x=100 và y=-200
a) muốn A đạt giá trị lớn nhất thì /x-5/ đạt giá trị nhỏ nhât
mà /x-5/ đạt giá trị nhỏ nhất bằng 0
suy ra giá trị lớn nhất của A là 1000 khi x=5
b) muốn B đạt giá trị nhỏ nhất t hì /y-3/ đạt già trị nhỏ nhất
mà /y-3/ đạt giá trị nhỏ nhất bằng 0
suy ra giá trị nhỏ nhất của B bằng 50 khi y=3
c) muốn C đạt giá trị nhỏ nhất thì /x-100/ và /y+200/ đạt giá trị nhỏ nhất
mà /x-100/ đạt giá trị nhỏ nhất bằng 0
/y+200/ đạt giá trị nhỏ nhất bằng 0
suy ra giá trị nhỏ nhất của C bằng -1 khi x=100 và y=-200
a) Với \(\forall a\in Z\) và a≠0, ta luôn có
\(a^2=a\cdot a\) có giá trị dương(vì âm nhân âm ra dương, dương nhân dương ra dương)(1)
Với a=0, ta luôn có:
\(a^2=a\cdot a=0\cdot0=0\)(2)
Từ (1) và (2) suy ra \(a^2\ge0\forall a\)
⇒\(-a^2\le0\forall a\)
b) Ta có: \(\left(x-8\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-8\right)^2-2018\ge-2018\forall x\)
Dấu '=' xảy ra khi
\(\left(x-8\right)^2=0\Leftrightarrow x-8=0\Leftrightarrow x=8\)
Vậy: Giá trị nhỏ nhất của biểu thức \(A=\left(x-8\right)^2-2018\) là -2018 khi x=8
c) Ta có: \(\left(x+5\right)^2\ge0\forall x\)
⇒\(-\left(x+5\right)^2\le0\forall x\)
⇒\(-\left(x+5\right)^2+9\le9\forall x\)
Dấu '=' xảy ra khi
\(\left(x+5\right)^2=0\Leftrightarrow x+5=0\Leftrightarrow x=-5\)
Vậy: Giá trị lớn nhất của biểu thức \(B=-\left(x+5\right)^2+9\) là 9 khi x=-5
Bài 1 :
a)x.(x+3)=0
=> x=0 hoặc x+3=0
ta có: x+3=0
x = -3
Vậy x=0 hoặc x=-3
b) (x-2). (5-x) = 0
=> x-2=0 hoặc 5-x =0
TH1
x-2=0
x =2
TH2
5-x =0
x =5
Vậy x=5 hoặc x=2
Bài 2
a) Để A có GTNN thì | x: 9| + |y-5| < 0
=> A=1890 +|x:9|+ | y-5| < 1890
Dấu = chỉ xảy ra khi | x: 9|+|y-5|=0
\(a,\) Trường hợp 1: \(\left\{{}\begin{matrix}a>0\Rightarrow\\a^2=a.a=\left(-a\right).\left(-a\right)\end{matrix}\right.\Rightarrow a^2>0\left(1\right)\)
Tường hợp 2: \(a\ge0\Rightarrow a.a>0\Rightarrow a^2\ge0\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow a^2\ge0\forall a\in Z\)
\(b,\left(x-11\right)^2+2020\)
Ta có: \(\left(x-11\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-11\right)^2+2020\ge2020\forall x\)
\(\Rightarrow Min=2020\Leftrightarrow x=11\)
\(c,-\left(x+64\right)^2+6789\)
Ta có: \(-\left(x+64\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+64\right)^2+64789\le6789\forall x\)
\(\Rightarrow Max=6789\Leftrightarrow x=-64\)
Vậy ..........