\(\sqrt{x-2\sqrt{x-3}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2018

\(A=\sqrt{\left(x-3\right)-2\sqrt{x-3}+1+2}=\sqrt{\left[\left(x-3\right)-1\right]^2+2}\)

                                                                                    \(=\sqrt{\left(x-4\right)^2+2}\ge\sqrt{2}\)

             GTNN CỦA A=CĂN 2      TẠI X=4

\(B=2.\sqrt{x^2+3x+\frac{9}{4}+\frac{11}{4}}=2.\sqrt{\left(x+\frac{3}{2}\right)^2+\frac{11}{4}}=\sqrt{4.\left(x+\frac{3}{2}\right)^2+11}\ge\sqrt{11}\)

GTNN CỦA B=CĂN 11 TẠI X=-3/2

bài 2

\(A=\sqrt{-2x^2+7}\le\sqrt{7}\)

GTLN CỦA A=CĂN 7 TẠI X=0

\(B=1+\sqrt{-\left(x^2-6x+7\right)}=1+\sqrt{-\left(x-3\right)^2+2}\)

để B lớn nhất thì \(\sqrt{-\left(x-3\right)^2+2}\) lớn nhất 

\(\sqrt{-\left(x-3\right)^2+2}\le2\)

=> GTLN CỦA B=1+2 =3 TẠI X=3

\(C=7+\sqrt{-4\left(x^2-x\right)}=7+\sqrt{-4\left(x-\frac{1}{2}\right)^2+1}\le7+1=8\)

GTLN là 8 tại x=1/2

NV
22 tháng 6 2019

\(A=\sqrt{\left(x-4\right)^2+4}-12\ge\sqrt{4}-12=-10\)

\(\Rightarrow A_{min}=-10\) khi \(x=4\)

\(B=2\sqrt{\left(x+\frac{3}{2}\right)^2+\frac{11}{4}}\ge2\sqrt{\frac{11}{4}}=\sqrt{11}\)

\(B_{min}=\sqrt{11}\) khi \(x=-\frac{3}{2}\)

\(C=\frac{3}{1+\sqrt{9-\left(x-1\right)^2}}\ge\frac{3}{1+\sqrt{9}}=\frac{3}{4}\) (để chặt chẽ thì cần tìm ĐKXĐ cho căn thức trước, bạn tự tìm)

Bài 2:

\(A=\sqrt{7-2x^2}\le\sqrt{7}\)

\(A_{max}=\sqrt{7}\) khi \(x=0\)

\(B=\sqrt{7-\left(2x+1\right)^2}+5\le\sqrt{7}+5\) (cần ĐKXĐ)

\(B_{max}=\sqrt{7}+5\) khi \(x=-\frac{1}{2}\)

\(C=7+\sqrt{1-\left(2x-1\right)^2}\le7+\sqrt{1}=8\) (cần tìm ĐKXĐ)

\(C_{max}=8\) khi \(x=\frac{1}{2}\)

21 tháng 8 2020

a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)

Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)

\(\Rightarrow A\ge\sqrt{1}=1\)

Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)

b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)

\(=\sqrt{2\left(x-1\right)^2+4}\)

Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)

\(\Rightarrow B\ge\sqrt{4}=2\)

Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)

Vậy \(minB=2\Leftrightarrow x=1\)

21 tháng 8 2020

Mơn bạn nha

25 tháng 10 2020

Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)

\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)

\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)

\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)

\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)

Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình

4 tháng 8 2019

\(A=\sqrt{x^2-4x+7}=\sqrt{\left(x^2-4x+4\right)+3}\)\(=\sqrt{\left(x-2\right)^2+3}\)

Ta thấy A luôn dương 

\(\Rightarrow A_{min}\Leftrightarrow\sqrt{\left(x-2\right)^2+3}\)Nhỏ nhất\(\Rightarrow\left(x-2\right)^2\)nhỏ nhất 

Hay \(\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)

\(\Rightarrow A_{min}=\sqrt{0+3}=\sqrt{3}\Leftrightarrow x=2\)

\(B=\sqrt{x-2\sqrt{x}-3}=\sqrt{x+\sqrt{x}-3\sqrt{x}-3}\)

\(=\sqrt{\sqrt{x}\left(\sqrt{x}+1\right)-3\left(\sqrt{x}+1\right)}\)\(=\sqrt{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)

\(B_{min}\Leftrightarrow B=0\Rightarrow\sqrt{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}+1=0\\\sqrt{x}-3=0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}=-1\\\sqrt{x}=3\end{cases}\Rightarrow}\orbr{\begin{cases}x\in\varnothing\\x=9\end{cases}}}\)

Vậy \(B_{min}=0\Leftrightarrow x=9\)

25 tháng 8 2020

a) Ta có: \(F=\sqrt{x^2-4x+5}=\sqrt{\left(x-2\right)^2+1}\ge\sqrt{1}=1\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy Min(F) = 1 khi x=2

b) \(D=\sqrt{2x^2-4x+10}=\sqrt{2\left(x-1\right)^2+8}\ge\sqrt{8}=2\sqrt{2}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy \(Min\left(D\right)=2\sqrt{2}\Leftrightarrow x=1\)

c) \(G=\sqrt{2x^2-6x+5}=\sqrt{2\left(x-\frac{3}{2}\right)^2+\frac{1}{2}}\ge\sqrt{\frac{1}{2}}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-\frac{3}{2}\right)^2=0\Rightarrow x=\frac{3}{2}\)

Vậy \(Min\left(G\right)=\frac{\sqrt{2}}{2}\Leftrightarrow x=\frac{3}{2}\)

19 tháng 8 2016
A^2 = x + y - 3 + 2√[(x - 2)(y - 3)] <= 1 + (x + y - 3) = 2 vậy A max là √2 khi x = 1,5; y = 2,5
19 tháng 8 2016
Hai cái còn lại làm tương tự
24 tháng 9 2018

b)\(\sqrt{25x^2}=19\)

\(\Leftrightarrow5x=19\)

\(\Leftrightarrow x=\dfrac{19}{5}\)

24 tháng 9 2018

c)\(\sqrt{x-7}+3=0\)

\(\Leftrightarrow\sqrt{x-7}=-3\)

\(\Leftrightarrow x-7=9\)

\(\Leftrightarrow x=16\)