K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2022

a) Vì \(\widehat{M}\) là trung điểm của \(\widehat{BC}\) nên:

\(\widehat{BM}=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)

\(\Delta ABC\) cân tại \(A\), lại có \(\widehat{AM}\) là đường phân giác nên \(\widehat{AM}\) cũng là đường cao. Do đó \(\Delta AMB\) vuông tại \(\widehat{M}\)

\(\Rightarrow AM^2=AB^2-BM^2\) ( theo định lí Pytago )

\(\Rightarrow\widehat{AM}=4cm\)

\(S_{ABC}=\dfrac{AM.BC}{2}=\dfrac{4.6}{2}=12\left(cm^2\right)\)

b) \(\Delta AMC\) vuông tại\(M\) có \(\widehat{MO}\) là đường trung tuyến nên \(\widehat{OM}=\widehat{OA}\)

 \(\Rightarrow\text{∠}OAM=\text{∠}OMA\)( \(\Delta AMO\) cân tại \(O\)

Lại có \(\text{∠}OAM=\text{∠}MAB\) ( \(AM\) là tia phân giác của \(BAC\) )

\(\Rightarrow\text{∠}OMA=\text{∠}MAB\)

Mà đây là 2 góc ở vị trí so le trong

\(\Rightarrow OM\text{ // }AB\)

Vậy tứ giác \(ABMO\) là hình thang. 

c) Tứ giác \(AMCK\) có \(\widehat{OA}=\widehat{OC};\widehat{OM}=\widehat{OK}\)  nên tứ giác \(AMCK\) là hình bình hành . Lại có \(\text{∠}AMC=90^o\)(chứng minh trên) nên tứ giác \(ACMK\) là hình chữ nhật

Hình chữ nhật \(ACMK\) là hình vuông

\(\Leftrightarrow\widehat{AM}=\widehat{MC}=\widehat{BM}\)

\(\Leftrightarrow\widehat{AM}=\dfrac{BC}{2}\)

\(\Leftrightarrow\Delta ABC\) vuông tại \(\widehat{A}\)

undefined

 

14 tháng 2 2022

TK
 

a) Vì M là trung điểm của BC nên:

BM = BC/2 = 6/2 = 3(cm)

Tam giác ABC cân tại A, lại có AM là đường phân giác nên AM cũng là đường cao. Do đó tam giác AMB vuông tại M.

Suy ra: AM2 = AB2 - BM2 (Định lí Pytago)

= 52 - 32 = 16(cm)

Suy ra AM = 4cm

Bộ Đề thi Toán lớp 8

b) ΔAMC vuông tại M có MO là đường trung tuyến nên OM = OA.

Suy ra ∠OAM = ∠OMA ( ΔAMO cân tại O)

Lại có ∠OAM = ∠MAB (AM là tia phân giác góc BAC)

Suy ra ∠OMA = ∠MAB

Mà đây là 2 góc ở vị trí so le trong

Suy ra OM // AB

Vậy tứ giác ABMO là hình thang.

c) Tứ giác AMCK có OA = OC; OM = OK nên tứ giác AMCK là hình bình hành . Lại có ∠AMC = 90o (chứng minh trên) nên tứ giác AMCK là hình chữ nhật.

Hình chữ nhật AMCK là hình vuông

⇔ AM = MC = BM

⇔ AM = BC/2

⇔ ΔABC vuông cân tại A.

8 tháng 5 2019

a) Vì M là trung điểm của BC nên:

BM = BC/2 = 6/2 = 3(cm)

Tam giác ABC cân tại A, lại có AM là đường phân giác nên AM cũng là đường cao. Do đó tam giác AMB vuông tại M.

Suy ra: AM2 = AB2 - BM2 (Định lí Pytago)

= 52 - 32 = 16(cm)

Suy ra AM = 4cm

b) ΔAMC vuông tại M có MO là đường trung tuyến nên OM = OA.

Suy ra ∠OAM = ∠OMA ( ΔAMO cân tại O)

Lại có ∠OAM = ∠MAB (AM là tia phân giác góc BAC)

Suy ra ∠OMA = ∠MAB

Mà đây là 2 góc ở vị trí so le trong

Suy ra OM // AB

Vậy tứ giác ABMO là hình thang.

c) Tứ giác AMCK có OA = OC; OM = OK nên tứ giác AMCK là hình bình hành . Lại có ∠AMC = 90o (chứng minh trên) nên tứ giác AMCK là hình chữ nhật.

Hình chữ nhật AMCK là hình vuông

⇔ AM = MC = BM

⇔ AM = BC/2

⇔ ΔABC vuông cân tại A.

5 tháng 1 2017

Hình bạn tự vẽ chắc dc rùi nhé mình chỉ giải thôi 

Bài làm 

a/ \(\Delta\)ABC cân tại A có AM là đường trung tuyến ứng với cạnh BC ( M là trung điểm BC )

Nên  Am cũng là đường cao \(\Rightarrow\)AM \(⊥\)BC

  vì M là trung điểm của BC \(\Rightarrow\)BM= MC = \(\frac{1}{2}BC=\frac{1}{2}.6=3cm\)

Xét tam giác AMB vuông tại M có:

AM2 + BM2 = AB2

AM2 + 32     = 52

AM2 + 9     =  25

AM2           =  25 - 9 =16

\(\Rightarrow\)AM= \(\sqrt{16}=4\)

Vậy S ABC = \(\frac{1}{2}AM.BC\)\(\frac{1}{2}4.6=12\)

b/ Xét tứ giác AMCN có :

OA=OC (gt)

OM=ON ( N đối xứng với M qua O )

\(\Rightarrow\)Tứ giác AMCN là hình bình hành

Mà AM \(⊥\)MC ( chứng minh ở câu a ) \(\Rightarrow\)\(\widehat{AMC}\)= 90 0

Hình bình hành AMCN có \(\widehat{AMC}=90\)nên AMCN là hình chữ nhật

C/ Để AMNC là hình vuông thì AM phải bằng MC ( Vì theo lý thuyết hcn có 2 cạnh kề bằng nhau là hình vuông )

Nếu tam giác ABC vuông cân tại A thì có :

AM là đường trung tuyến ứng với cạnh huyền BC nên BM = AM = MC 

Vậy để tứ giác AMCN là hình vuông thì tam giác ABC phải là tam giác vuông cân tại A

Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Qtheo thứ tự là trung điểm của AD, AF, EF, ED.a) Tứ giác MNPQ là hình gì? Vì sao?7b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M quaAB, E là giao điểm của MH và AB....
Đọc tiếp

Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Q
theo thứ tự là trung điểm của AD, AF, EF, ED.
a) Tứ giác MNPQ là hình gì? Vì sao?

7

b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?
c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?
Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M qua
AB, E là giao điểm của MH và AB. Gọi K là điểm đối xứng với M qua AC, F là giao điểm của MK
và AC.
a) Xác định dạng của các tứ giác AEMF, AMBH, AMCK.
b) Chứng minh rằng H đối xứng với K qua A.
c) Tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông?
Bài 5: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua trung điểm
M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

1

https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem

Bạn xem tại link này nhé

Học tốt!!!!!!

a: Xét tứ giác AMCK có 

I là trung điểm của AC
I là trung điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

b: \(S_{ABC}=\dfrac{AM\cdot BC}{2}=3\cdot4=12\left(cm^2\right)\)

a: Xét tứ giác AMCK có

I là trung điểm chung của AC và MK

góc AMC=90 độ

Do đó: AMCK là hình chữ nhật

b: BM=CM=BC/2=3cm

\(AM=\sqrt{5^2-3^2}=4\left(cm\right)\)

S=1/2*AM*BC=1/2*6*4=3*4=12cm2

c: Để AMCK là hình vuông thì AM=CM=BC/2

=>ΔABC vuông tại A

9 tháng 1 2018

Chỗ mình kiểm tra học kì có câu này mà bây giờ bắt làm lại để nộp mà k biết làm