Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì M là trung điểm của BC nên:
BM = BC/2 = 6/2 = 3(cm)
Tam giác ABC cân tại A, lại có AM là đường phân giác nên AM cũng là đường cao. Do đó tam giác AMB vuông tại M.
Suy ra: AM2 = AB2 - BM2 (Định lí Pytago)
= 52 - 32 = 16(cm)
Suy ra AM = 4cm
b) ΔAMC vuông tại M có MO là đường trung tuyến nên OM = OA.
Suy ra ∠OAM = ∠OMA ( ΔAMO cân tại O)
Lại có ∠OAM = ∠MAB (AM là tia phân giác góc BAC)
Suy ra ∠OMA = ∠MAB
Mà đây là 2 góc ở vị trí so le trong
Suy ra OM // AB
Vậy tứ giác ABMO là hình thang.
c) Tứ giác AMCK có OA = OC; OM = OK nên tứ giác AMCK là hình bình hành . Lại có ∠AMC = 90o (chứng minh trên) nên tứ giác AMCK là hình chữ nhật.
Hình chữ nhật AMCK là hình vuông
⇔ AM = MC = BM
⇔ AM = BC/2
⇔ ΔABC vuông cân tại A.
Hình bạn tự vẽ chắc dc rùi nhé mình chỉ giải thôi
Bài làm
a/ \(\Delta\)ABC cân tại A có AM là đường trung tuyến ứng với cạnh BC ( M là trung điểm BC )
Nên Am cũng là đường cao \(\Rightarrow\)AM \(⊥\)BC
vì M là trung điểm của BC \(\Rightarrow\)BM= MC = \(\frac{1}{2}BC=\frac{1}{2}.6=3cm\)
Xét tam giác AMB vuông tại M có:
AM2 + BM2 = AB2
AM2 + 32 = 52
AM2 + 9 = 25
AM2 = 25 - 9 =16
\(\Rightarrow\)AM= \(\sqrt{16}=4\)
Vậy S ABC = \(\frac{1}{2}AM.BC\)= \(\frac{1}{2}4.6=12\)
b/ Xét tứ giác AMCN có :
OA=OC (gt)
OM=ON ( N đối xứng với M qua O )
\(\Rightarrow\)Tứ giác AMCN là hình bình hành
Mà AM \(⊥\)MC ( chứng minh ở câu a ) \(\Rightarrow\)\(\widehat{AMC}\)= 90 0
Hình bình hành AMCN có \(\widehat{AMC}=90\)nên AMCN là hình chữ nhật
C/ Để AMNC là hình vuông thì AM phải bằng MC ( Vì theo lý thuyết hcn có 2 cạnh kề bằng nhau là hình vuông )
Nếu tam giác ABC vuông cân tại A thì có :
AM là đường trung tuyến ứng với cạnh huyền BC nên BM = AM = MC
Vậy để tứ giác AMCN là hình vuông thì tam giác ABC phải là tam giác vuông cân tại A
https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem
Bạn xem tại link này nhé
Học tốt!!!!!!
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
b: \(S_{ABC}=\dfrac{AM\cdot BC}{2}=3\cdot4=12\left(cm^2\right)\)
a: Xét tứ giác AMCK có
I là trung điểm chung của AC và MK
góc AMC=90 độ
Do đó: AMCK là hình chữ nhật
b: BM=CM=BC/2=3cm
\(AM=\sqrt{5^2-3^2}=4\left(cm\right)\)
S=1/2*AM*BC=1/2*6*4=3*4=12cm2
c: Để AMCK là hình vuông thì AM=CM=BC/2
=>ΔABC vuông tại A
a) Vì \(\widehat{M}\) là trung điểm của \(\widehat{BC}\) nên:
\(\widehat{BM}=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
\(\Delta ABC\) cân tại \(A\), lại có \(\widehat{AM}\) là đường phân giác nên \(\widehat{AM}\) cũng là đường cao. Do đó \(\Delta AMB\) vuông tại \(\widehat{M}\)
\(\Rightarrow AM^2=AB^2-BM^2\) ( theo định lí Pytago )
\(\Rightarrow\widehat{AM}=4cm\)
\(S_{ABC}=\dfrac{AM.BC}{2}=\dfrac{4.6}{2}=12\left(cm^2\right)\)
b) \(\Delta AMC\) vuông tại\(M\) có \(\widehat{MO}\) là đường trung tuyến nên \(\widehat{OM}=\widehat{OA}\)
\(\Rightarrow\text{∠}OAM=\text{∠}OMA\)( \(\Delta AMO\) cân tại \(O\))
Lại có \(\text{∠}OAM=\text{∠}MAB\) ( \(AM\) là tia phân giác của \(BAC\) )
\(\Rightarrow\text{∠}OMA=\text{∠}MAB\)
Mà đây là 2 góc ở vị trí so le trong
\(\Rightarrow OM\text{ // }AB\)
Vậy tứ giác \(ABMO\) là hình thang.
c) Tứ giác \(AMCK\) có \(\widehat{OA}=\widehat{OC};\widehat{OM}=\widehat{OK}\) nên tứ giác \(AMCK\) là hình bình hành . Lại có \(\text{∠}AMC=90^o\)(chứng minh trên) nên tứ giác \(ACMK\) là hình chữ nhật
Hình chữ nhật \(ACMK\) là hình vuông
\(\Leftrightarrow\widehat{AM}=\widehat{MC}=\widehat{BM}\)
\(\Leftrightarrow\widehat{AM}=\dfrac{BC}{2}\)
\(\Leftrightarrow\Delta ABC\) vuông tại \(\widehat{A}\)
TK
a) Vì M là trung điểm của BC nên:
BM = BC/2 = 6/2 = 3(cm)
Tam giác ABC cân tại A, lại có AM là đường phân giác nên AM cũng là đường cao. Do đó tam giác AMB vuông tại M.
Suy ra: AM2 = AB2 - BM2 (Định lí Pytago)
= 52 - 32 = 16(cm)
Suy ra AM = 4cm
b) ΔAMC vuông tại M có MO là đường trung tuyến nên OM = OA.
Suy ra ∠OAM = ∠OMA ( ΔAMO cân tại O)
Lại có ∠OAM = ∠MAB (AM là tia phân giác góc BAC)
Suy ra ∠OMA = ∠MAB
Mà đây là 2 góc ở vị trí so le trong
Suy ra OM // AB
Vậy tứ giác ABMO là hình thang.
c) Tứ giác AMCK có OA = OC; OM = OK nên tứ giác AMCK là hình bình hành . Lại có ∠AMC = 90o (chứng minh trên) nên tứ giác AMCK là hình chữ nhật.
Hình chữ nhật AMCK là hình vuông
⇔ AM = MC = BM
⇔ AM = BC/2
⇔ ΔABC vuông cân tại A.