Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5+5^3+5^5+5^7+..+5^{27}\)
\(=\left(5+5^3\right)+5^4\left(5+5^3\right)+...+5^{24}\left(5+5^3\right)\)
\(=130+130\cdot5^4+...+130\cdot5^{24}\)
\(=130\left(1+5^4+..5^{24}\right)\)
Vì \(130⋮26\Rightarrow5+5^3+5^5+...+5^{27}⋮26\left(đpcm\right)\)
x2+3 chia hết cho x-1
=>x2-x+x-1+4 chia hết cho x-1
=>x(x-1)+(x-1)+4 chia hết cho x-1
=>4 chia hết cho x-1
=>x-1 E Ư(4)={1;-1;4;-4}
=>x E {2;0;5;-3}
x2+5x-11 chia hết cho x+5
=>x(x+5)-11 chia hết cho x+5
=>11 chia hết cho x+5
=>x+5 E Ư(11)={1;-1;11;-11}
=>x E {-4;-6;6;-16}
x2-3x+5 chia hết cho x+5
=>x2+5x-8x-40+45 chia hết cho x+5
=>x(x+5)-8(x+5)+45 chia hết cho x+5
=>45 chia hết cho x+5
=>x+5 E Ư(45)={1;-1;3;-3;5;-5;9;-9;15;-15;45;-45}
=>x E {-4;-6;-2;-8;0;-10;4;-14;10;-20;40;-50}
Bài 1: Tìm x
a) x . (x + 3) = 0
=> \(\orbr{\begin{cases}x=0\\x+3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=0-3\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)
b) (x -1) (x2 - 1) = 0
=> \(\orbr{\begin{cases}x-1=0\\x^2-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0+1\\x^2=0+1\left(bỏ\right)\end{cases}}\)
=> x = 1
Bài 2: Tìm x, biết
a) -12(x - 5) + 7(3 - x) = 5
-12x - (-12 . 5) + 7 . 3 - 7x = 5
-12x + 60 + 21 - 7x = 5
-12x - 7x = 5 - 21 - 60
-19x = -76
x = -76 : (-19)
x = 4
ta có :số chia hết cho cả 2 và 3 là số chia hết cho 6
các số chia hết cho 6 trong khoảng từ 50 đến 200 là :
A={54;60;66;...;192;198}
A có :(198-54):6+1=25(số hạng)
vậy có 25 số chia hết cho cả 2 và 3 trong khoảng từ 50 đến 200
\(A=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\\ \)
- Nếu n chia hết cho 5 thì A chia hết cho 5
- Nếu n chia 5 dư 1 thì (n-1) chia hết cho 5 => A chia hết cho 5
- Nếu n chia 5 dư 2 thì n = 5k +2 => n2 + 1 = 25k2 + 20k + 4 + 1 chia hết cho 5 => A chia hết cho 5
- Nếu n chia 5 dư 3 thì n = 5k +3 => n2 + 1 = 25k2 + 30k + 9 + 1 chia hết cho 5 => A chia hết cho 5
- Nếu n chia 5 dư 4 thì (n+1) chia hết cho 5 => A chia hết cho 5
n thuộc N lớn hơn hoặc bằng 2 chỉ có 5 trường hợp có số dư như trên khi chia cho 5. Nên A chia hết cho 5 với mọi n thuộc N lớn hơn hoặc bằng 2.
1) \(5^1+5^2+5^3+...+5^{2003}+5^{2004}=\) \(\left(5^1+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{2001}+5^{2004}\right)\)
\(=5\left(1+5^3\right)+5^2\left(1+5^3\right)+5^3\left(1+5^3\right)+...+5^{2001}\left(1+5^3\right)\)
\(=\left(1+5^3\right).\left(5+5^2+5^3+...+5^{2001}\right)\)
\(=126.\left(5+5^2+5^3+...+5^{2001}\right)⋮126\) \(\left(đpcm\right)\)