K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\left|2.5-x\right|=1.3\)

\(\Leftrightarrow\left|x-2.5\right|=1.3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2.5=1.3\\x-2.5=-1.3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3.8\\x=-1.3+2.5=1.2\end{matrix}\right.\)

Vậy: \(x\in\left\{3.8;1.2\right\}\)

b) Ta có: \(1.6-\left|x-0.2\right|=0\)

\(\Leftrightarrow\left|x-0.2\right|=1.6\)

\(\Leftrightarrow\left[{}\begin{matrix}x-0.2=1.6\\x-0.2=-1.6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1.8\\x=-1.4\end{matrix}\right.\)

Vậy: \(x\in\left\{1.8;-1.4\right\}\)

c) Ta có: \(13^x=169\)

\(\Leftrightarrow13^x=13^2\)

\(\Leftrightarrow x=2\)

Vậy: x=2

d) Ta có: \(\dfrac{-2}{x}=\dfrac{-x}{\dfrac{8}{25}}\)

\(\Leftrightarrow\dfrac{2}{x}=\dfrac{x}{\dfrac{8}{25}}\)

\(\Leftrightarrow x^2=\dfrac{16}{25}\)

hay \(x\in\left\{\dfrac{4}{5};-\dfrac{4}{5}\right\}\)

Vậy: \(x\in\left\{\dfrac{4}{5};-\dfrac{4}{5}\right\}\)

7 tháng 2 2021

\(|2,5-x|=1,3\)

\(\Rightarrow2,5-x=1,3\)    hoặc      -(2,5-x)=1,3

=>x=2,5-1,3                          x-2,5=1,3

=>x=1,2                                x=1,3+2,5=3,8

Vậy \(x\in\left\{1,2;3,8\right\}\)

\(1,6-|x-0,2|=0\Rightarrow|x-0,2|=1,6\)

=> x-0,2=1,6       hoặc       -(x-0,2)=1,6

=>x=1,6+0,2                      0,2-x=1,6

=>x=3,8                              x=0,2-1,6=-1,4

Vậy \(x\in\left\{3,8;-1,4\right\}\)

\(13^x=169\Rightarrow13^x=13^2\Rightarrow x=2\)

\(\dfrac{-2}{x}=\dfrac{-x}{\dfrac{8}{25}}\Rightarrow-2\times\dfrac{8}{25}=-x\times x\Rightarrow\dfrac{-16}{25}=-x^2\Rightarrow\dfrac{16}{25}=x^2\Rightarrow x^2=\left(\dfrac{4}{5}\right)^2=\left(-\dfrac{4}{5}\right)^2\)

\(\Rightarrow x=\dfrac{4}{5}\) hoặc \(x=-\dfrac{4}{5}\)

17 tháng 7 2017

a) \(\left|2,5-x\right|-1,3=0\)

th1: \(2,5-x\ge0\Leftrightarrow x\le2,5\)

\(\Rightarrow\left|2,5-x\right|-1,3=0\Leftrightarrow2,5-x-1,3=0\Leftrightarrow x=1,2\left(tmđk\right)\)

th2: \(2,5-x< 0\Leftrightarrow x>2,5\)

\(\Rightarrow\left|2,5-x\right|-1,3=0\Leftrightarrow x-2,5-1,3=0\Leftrightarrow x=3,8\left(tmđk\right)\)

vậy \(x=1,2;x=3,8\)

b) \(1,6.\left|x-0,2\right|=0\Leftrightarrow\left|x-0,2\right|=0\Leftrightarrow x-0,2=0\Leftrightarrow x=0,2\) vậy \(x=0,2\)

c) \(\left|\dfrac{1}{3}-x\right|-\left|\dfrac{-3}{7}\right|=0\)

th1: \(\dfrac{1}{3}-x\ge0\Leftrightarrow x\le\dfrac{1}{3}\)

\(\Rightarrow\left|\dfrac{1}{3}-x\right|-\left|\dfrac{-3}{7}\right|=0\Leftrightarrow\dfrac{1}{3}-x-\dfrac{3}{7}=0\Leftrightarrow x=\dfrac{-2}{21}\left(tmđk\right)\)

th2: \(\dfrac{1}{3}-x< 0\Leftrightarrow x>\dfrac{1}{3}\)

\(\Rightarrow\left|\dfrac{1}{3}-x\right|-\left|\dfrac{-3}{7}\right|=0\Leftrightarrow x-\dfrac{1}{3}-\dfrac{3}{7}=0\Leftrightarrow x=\dfrac{16}{21}\left(tmđk\right)\)

vậy \(x=\dfrac{-2}{21};x=\dfrac{16}{21}\)

d) \(\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)

th1: \(x+\dfrac{4}{15}\ge0\Leftrightarrow x\ge\dfrac{-4}{15}\)

\(\Rightarrow\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\Leftrightarrow x+\dfrac{4}{15}-3,75=-2,15\)

\(\Leftrightarrow x=\dfrac{4}{3}\left(tmđk\right)\)

th2: \(x+\dfrac{4}{15}< 0\Leftrightarrow x< \dfrac{-4}{15}\)

\(\Rightarrow\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\Leftrightarrow-x-\dfrac{4}{15}-3,75=-2,15\)

\(\Leftrightarrow x=\dfrac{-28}{15}\left(tmđk\right)\)

vậy \(x=\dfrac{4}{3};x=\dfrac{-28}{15}\)

e) ta có : \(\left|x-1,5\right|\ge0\forall x\)\(\left|2,5-x\right|\ge0\forall x\)

\(\Rightarrow\left|x-1,5\right|+\left|2,5-x\right|=0\Leftrightarrow\left\{{}\begin{matrix}x-1,5=0\\2,5-x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1,5\\x=2,5\end{matrix}\right.\) 2 giá trị này khác nhau \(\Rightarrow\) phương trình vô nghiệm

22 tháng 8 2017

1.

\(\left(1-2x\right)^4=81\\ \Rightarrow\left[{}\begin{matrix}1-2x=3\\1-2x=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}-2x=2\\-2x=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

Vậy ...

2.

\(\left|2,5-x\right|=1,3\\ \Rightarrow\left[{}\begin{matrix}2,5-x=1,3\\2,5-x=-1,3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1,2\\x=3,8\end{matrix}\right.\)

Vậy ...

3.

\(5^x+5^{x+2}=650\\ 5^x\left(1+5^2\right)=650\\ 5^x\cdot26=650\\ 5^x=25\\ x=2\)

Vậy ...

4, 5 tự làm

22 tháng 8 2017

Cảm ơn bạn nhiều lắm haha

16 tháng 6 2017

c) Ta có: \(\left\{{}\begin{matrix}\left|x-1,5\right|\ge0\forall x\in Q\\\left|2,5-x\right|\ge0\forall x\in Q\end{matrix}\right.\)

\(\Rightarrow\left|x-1,5\right|+\left|2,5-x\right|\ge0\forall x\in Q\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\left|x-1,5\right|=0\\\left|2,5-x\right|=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=1,5\\x=2,5\end{matrix}\right.\)

Vậy \(x=\left\{{}\begin{matrix}1,5\\2,5\end{matrix}\right.\).

e) \(\left(x-2\right)^2=1\)

\(\Rightarrow\left[{}\begin{matrix}x-2=\sqrt{1}\\x-2=-\sqrt{1}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\).

Mấy câu kia dễ rồi.

16 tháng 6 2017

sửa lại ý c của N.Anh

Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:

\(\left|x-1,5\right|+\left|2,5-x\right|\ge\left|x-1,5+2,5-x\right|=1\)

\(\Rightarrow\left|x-1,5\right|+\left|2,5-x\right|\ge1>0\)

mà theo đề thì \(\left|x-1,5\right|+\left|2,5-x\right|=0\)

\(\Rightarrow\) k có gt \(x\) nào tm yêu cầu đề bài

14 tháng 12 2017

y= -6, 6

x=-8,8

14 tháng 12 2017

cần cách giải

23 tháng 6 2018

1,

\(\left(2x+1\right)^3=-0,001\\ \left(2x+1\right)^3=\left(-0.1\right)^3\\ \Leftrightarrow2x+1=-0.1\\ 2x=-1.1\\ x=-\dfrac{11}{10}:2\\ x=-\dfrac{11}{20}\\ Vậy...\)

2,

\(\left(2x-3\right)^4=\left(2x-3\right)^6\\ \Leftrightarrow\left(2x-3\right)^6-\left(2x-3\right)^4=0\\ \Leftrightarrow\left(2x-3\right)^4\cdot\left[\left(2x-3\right)^2-1\right]=0\\ \Rightarrow\left\{{}\begin{matrix}\left(2x-3\right)^4=0\\\left(2x-3\right)^2-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x-3=0\\\left(2x-3\right)^2=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x=3\\2x-3=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\x=2\end{matrix}\right.\\ Vậyx\in\left\{\dfrac{3}{2};2\right\}\)

3, Làm tương tự câu 2

5,

\(9^x:3^x=3\\ \left(9:3\right)^x=3\\ 3^x=3\\ \Rightarrow x=1\\ Vậy...\)

6,

\(3^x+3^{x+3}=756\\ 3^x+3^x\cdot3^3\\ 3^x\cdot\left(1+27\right)=756\\ 3^x\cdot28=756\\ \Leftrightarrow3^x=27\\ 3^x=3^3\\ \Rightarrow x=3\\ vậy...\)

7,

\(5^{x+1}+6\cdot5^{x+1}=875\\ 5^{x+1}\cdot\left(1+6\right)=875\\ 5^{x+1}\cdot7=875\\ \Leftrightarrow5^{x+1}=125\\ \Leftrightarrow5^{x+1}=5^3\Leftrightarrow x+1=3\\ \Rightarrow x=2\\ Vậy...\)

9,

23 tháng 6 2018

lê thị hồng vân trả lời típ đikhocroi

19 tháng 11 2022

a: =>1/6x=-49/60

=>x=-49/60:1/6=-49/60*6=-49/10

b: =>3/2x-1/5=3/2 hoặc 3/2x-1/5=-3/2

=>x=17/15 hoặc x=-13/15

c: =>1,25-4/5x=-5

=>4/5x=1,25+5=6,25

=>x=125/16

d: =>2^x*17=544

=>2^x=32

=>x=5

i: =>1/3x-4=4/5 hoặc 1/3x-4=-4/5

=>1/3x=4,8 hoặc 1/3x=-0,8+4=3,2

=>x=14,4 hoặc x=9,6

j: =>(2x-1)(2x+1)=0

=>x=1/2 hoặc x=-1/2

a) \(7-\sqrt{x}=0\)

\(\Rightarrow\sqrt{x}=7\)

\(\Rightarrow x=\left(\sqrt{7}\right)^2\)

b) \(5\sqrt{x}+1=40\)

\(\Rightarrow5\sqrt{x}=39\)

\(\Rightarrow\sqrt{x}=7,8\)

\(\Rightarrow x=\left(\sqrt{7,8}\right)^2\)

c) \(\dfrac{5}{12}\sqrt{x}-\dfrac{1}{6}=\dfrac{1}{3}\)

\(\Rightarrow\dfrac{5}{12}\sqrt{x}=\dfrac{1}{2}\)

\(\Rightarrow\sqrt{x}=1,2\)

\(\Rightarrow x=\left(\sqrt{1,2}\right)^2\)

d) \(4x^2-1=0\)

\(\Rightarrow\left(2x-1\right)\left(2x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=0\Rightarrow x=0,5\\2x+1=0\Rightarrow x=-0,5\end{matrix}\right.\)

e) \(\sqrt{x+1}-2=0\)

\(\Rightarrow\sqrt{x+1}=2\)

\(\Rightarrow x+1=1,414\)

\(\Rightarrow x=0,414\)

f) \(2x^2+0,82=1\)

\(\Rightarrow2x^2=0,18\)

\(\Rightarrow x^2=0,09\)

\(\Rightarrow x=\pm0,3\)

g) Không có kết quả

25 tháng 11 2018

a, \(\left|x+\dfrac{1}{8}\right|-\dfrac{1}{6}=0\Leftrightarrow\left|x+\dfrac{1}{8}\right|=\dfrac{1}{6}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{8}=\dfrac{1}{6}\\x+\dfrac{1}{8}=\dfrac{-1}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{24}\\x=\dfrac{-7}{24}\end{matrix}\right.\)

b, \(\dfrac{x}{27}=\dfrac{-2}{36}\Leftrightarrow36x=-2.27\Leftrightarrow36x=-54\Leftrightarrow x=\dfrac{-3}{2}\)

c, \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=\left(\dfrac{1}{4}\right)^2\)

\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{1}{4}\Leftrightarrow x=\dfrac{-1}{4}\)

15 tháng 10 2018

Bài 1

a, \(D=1-\left|2x-3\right|\)

Ta có : \(\left|2x-3\right|\ge0\)

\(\Rightarrow1-\left|2x-3\right|\le1\)

Dấu "=" xảy ra khi \(\left|2x-3\right|=0\)

\(\Leftrightarrow2x-3=0\)

\(\Leftrightarrow2x=3\)

\(\Leftrightarrow x=3:2=\dfrac{3}{2}\)

15 tháng 10 2018

\(b,\) Ta có : \(\left|10-5x\right|\ge0\Rightarrow\left|10-5x\right|+14,2\ge14,3\Rightarrow-\left|10-5x\right|-14,2\le-14,2\)

Dấu "=" xảy ra khi \(-\left|10-5x\right|=0\)

\(\Leftrightarrow10-5x=0\)

\(\Leftrightarrow5x=10\)

\(\Leftrightarrow x=10:5=2\)

Vậy \(Emax=-14,2\Leftrightarrow x=2\)

\(c,\) Ta có : \(\left|5x-2\right|\ge0\)

\(\left|3y-12\right|\ge0\)

\(\left|5x-2\right|+\left|3y+12\right|-4\ge-4\)

\(4-\left|5x-2\right|-\left|3y+12\right|\le4\)

Dấu "=" xảy ra khi \(\left[{}\begin{matrix}\left|5x-2\right|=0\\\left|3y+12\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=2\\3y=-12\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{5}\\y=-4\end{matrix}\right.\)

\(d,\) \(A=5-3\left(2x-1\right)^2\)

Ta có : \(\left(2x-1\right)^2\ge0\)

\(\Rightarrow3.\left(2x-1\right)^2\ge0\)

\(\Rightarrow3.\left(2x-1\right)^2-5\ge-5\)

\(\Rightarrow5-3\left(2x-1\right)^2\le5\)

Dấu "=" xảy ra khi \(\left(2x-1\right)^2=0\)

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(Amax=5\Leftrightarrow x=\dfrac{1}{2}\)