K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔNBC và ΔMCB có

NB=MC

góc NBC=góc MCB

BC chung

=>ΔNBC=ΔMCB

b: ΔNBC=ΔMCB

=>góc KBC=góc KCB

=>ΔKBC cân tại K

c: Xét tứ giácc AKCI có

M là trung điểm chung của AC và KI

nên AKCI là hình bình hành

=>CI//AK

Xét tứ giác AKCI co

M là trung điểm chung của AC và KI

nên AKCI là hình bình hành

=>CI//AK

30 tháng 1 2021

Ta có: AN = BN = \(\dfrac{1}{2}\)AB (N là trung điểm của AB)

          AM = CM = \(\dfrac{1}{2}\)AC (M là trung điểm của AC)

Mà AB = AC ( do tam giác ABC cân tại A)

=> AN = BN = AM = CM

Xét tam giác BNC và tam giác CMB:

+ BC chung

+ ^B = ^C (tam giác ABC cân tại A)

+ BN = CM (cmt)

=> Tam giác BNC = tam giác CMB (c-g-c)

=> ^NCB = ^MBC (2 góc tương ứng)

Hay ^KCB = ^KBC 

=> Tam giác BKC cân tai K

Xét tam giác ABC: M là trung điểm của AC (gt)

                              N là trung điểm của AB (gt)

=> MN là đường trung bình của tam giác ABC (định nghĩa đường trung bình trong tam giác)

=> MN // BC (TC đường trung bình trong tam giác)

a) Ta có: \(AN=NB=\dfrac{AB}{2}\)(N là trung điểm của AB)

\(AM=MC=\dfrac{AC}{2}\)(M là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AN=NB=AM=MC

Xét ΔBNC và ΔCMB có 

BN=CM(cmt)

\(\widehat{NBC}=\widehat{MCB}\)(hai góc ở đáy của ΔABC cân tại A)

BC chung

Do đó: ΔBNC=ΔCMB(c-g-c)

b) Xét ΔANC và ΔABM có 

AN=AM(cmt)

\(\widehat{NAC}\) chung

AC=AB(ΔABC cân tại A)

Do đó: ΔANC=ΔABM(c-g-c)

\(\widehat{ACN}=\widehat{ABM}\)(hai góc tương ứng)

hay \(\widehat{NBK}=\widehat{MCK}\)

Xét ΔNBK có 

\(\widehat{NBK}+\widehat{NKB}+\widehat{BNK}=180^0\)(Định lí tổng ba góc trong một tam giác)(1)

Xét ΔMCK có

\(\widehat{MCK}+\widehat{MKC}+\widehat{CMK}=180^0\)(Định lí tổng ba góc trong một tam giác)(2)

Từ (1) và (2) suy ra \(\widehat{NBK}+\widehat{NKB}+\widehat{BNK}=\widehat{MCK}+\widehat{MKC}+\widehat{CMK}\)

mà \(\widehat{NBK}=\widehat{MCK}\)(cmt)

và \(\widehat{NKB}=\widehat{MKC}\)(hai góc đối đỉnh)nên \(\widehat{BNK}=\widehat{CMK}\)Xét ΔNBK và ΔMCK có \(\widehat{BNK}=\widehat{CMK}\)(cmt)BN=CM(cmt)\(\widehat{NBK}=\widehat{MCK}\)(cmt)Do đó: ΔNBK=ΔMCK(g-c-g)⇒KB=KC(hai cạnh tương ứng)Xét ΔKBC có KB=KC(cmt)nên ΔKBC cân tại K(Định nghĩa tam giác cân)
9 tháng 1 2018

a) xét tam giác AMD và tam giác CMB có :

AM = CM ( vì Mlaf trung điểm của AC)

\(\widehat{AMD}=\widehat{CMB}\)(đối đỉnh)

MD = MB (gt)

=> tam giác AMD = tam giác CMB (c-g-c)

xét tam giác ANE và tam giác BNC có :

AN = BN ( vì N là trung điểm của AB)

\(\widehat{ANE}=\widehat{BNC}\)(đối đỉnh)

NE = CN (gt)

=> tam giác ANE = tam giác BNC (c-g-c)

b) vì tam giác AMD = tam giác CMB (cmt) => AD = BC (2 cạnh tương ứng)(1)

vì tam giác ANE = tam giác BNC (cmt) => AE = BC ( 2 cạnh tương ứng) (2)

từ (1), (2) => AD = AE (đpcm)

c) Vì tam giác AMD = tam giác CMB (cmt) => \(\widehat{MAD}=\widehat{MCB}\)(2 góc tương ứng)

mà \(\widehat{MAD}\)và \(\widehat{MCB}\)ở vị trí so le trong

do đó AD // BC (3)

Vì tam giác ANE = tam giác BNC (cmt) => \(\widehat{NAE}=\widehat{NBC}\)(2 góc tương ứng)

mà \(\widehat{NAE}\)và  \(\widehat{NBC}\) ở vị trí so le trong

do đó AE // BC (4)

từ (3), (4) => A, E, D thẳng hàng (đpcm) 

18 tháng 5 2016

a) 

a)Sao lại chứng minh  tam giác ACD= tam giác DMA 

Mà tam giác DMC<ADC(xem lại)

b)Xét tam giác DMC và tam giác BMA

       MB=MD(gt)

       DMC=AMB(đđ)

       MA=MC(Vì M là trung điểm AC)

⇒⇒tam giác DMC=tam giác BMA(c.g.c)

⇒⇒AB=DC(cặp cạnh tương ứng)(1)

Mà AB=AC(vì tam giác ABC cân)(2)

       Từ (1) và (2) suy ra:DC=AC

Vậy tam giác ACD cân tại D

c/

+ Xét tam giác BDE có

DM=BM => EM là trung tuyến thuộc cạnh BD của tg BDE (1)

+ Ta có

CA=CE (đề bài)

MA=MC (đề bài)

=> CE=2.MC hay MC=1/3ME (2)

Từ (1) và (2) =>C là trọng tâm của tam giác BDE => DC là trung tuyến thuộc cạnh BE của tg BDE => K là trung điểm của BE

18 tháng 5 2016

       MA=MC(Vì M là trung điểm AC)

$⇒⇒$⇒⇒tam giác DMC=tam giác BMA(c.g.c)

$⇒⇒$⇒⇒AB=DC(cặp cạnh tương ứng)(1)

Mà AB=AC(vì tam giác ABC cân)(2)

       Từ (1) và (2) suy ra:DC=AC

Vậy tam giác ACD cân tại D

c/

+ Xét tam giác BDE có

DM=BM => EM là trung tuyến thuộc cạnh BD của tg BDE (1)

+ Ta có

CA=CE (đề bài)

MA=MC (đề bài)

=> CE=2.MC hay MC=1/3ME (2)

Từ (1) và (2) =>C là trọng tâm của tam giác BDE => DC là trung tuyến thuộc cạnh BE của tg BDE => K là trung điểm của BE

a: Xét ΔAMI và ΔCMB có

MA=MC

góc AMI=góc CMB

MI=MB
Do đó: ΔAMI=ΔCMB

b: Xét tứ giác ABCI có

M là trung điểm chung của AC và BI

nên ABCI là hình bình hành

Suy ra: AI//BC và AI=BC

Xét tứ giác AKBC có

N là trung điểm chung của AB và KC

nên AKBC là hình bình hành

Suy ra: AK//BC và AK=BC

c: Ta có: AK//BC

AI//BC

Do đó: K,A,I thẳng hàng

mà AK=AI

nên A là trung điểm của KI