Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 2x+1 /5 = 3y-2/7 = 2x+3y -1 /6x
=> 2x+1+3y-2 / 5+7 = 2x+3y-1 /6x
=> 2x+3y-1 / 12 = 2x+3y-1 / 6x
=> 12 = 6x => x =2
a) Có x:y:z=3:5:6
\(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{6}\)
Đặt \(k=\frac{x}{3}=\frac{y}{5}=\frac{z}{6}\)
\(\Rightarrow x=3k\)
\(\Rightarrow y=5k\)
\(\Rightarrow z=6k\)
Thay vào \(\frac{2x-3y+4z}{x-11y-4z}=\frac{2.3k-3.5k+4.6k}{3k-11.5k-4.6k}\)\(=\frac{k.\left(2.3-3.5+4.6\right)}{k.\left(3-11.5-4.6\right)}=\frac{k.15}{k.\left(-76\right)}=\frac{15}{-76}\)
b) Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{1+2y}{18}=\frac{1+6y}{6x}=\frac{1+2y+1+6y}{18+6x}\)\(=\frac{2+8y}{18+6x}=\frac{2.\left(1+4y\right)}{2.\left(9+3x\right)}=\frac{1+4y}{9+3x}\)
\(\Rightarrow\frac{1+4y}{9+3x}=\frac{1+4y}{24}\Rightarrow9+3x=24\Rightarrow x=5\)
a, Ta có: \(7y=5z\Leftrightarrow\dfrac{y}{5}=\dfrac{z}{7}\)
Ta lại có: \(\dfrac{x}{3}=\dfrac{y}{4}\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{20}\left(1\right)\)
\(\dfrac{y}{5}=\dfrac{z}{7}\Leftrightarrow\dfrac{y}{20}=\dfrac{z}{28}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\Leftrightarrow\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\) và \(2x+3y-z=186\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
+) \(\dfrac{2x}{30}=3\Rightarrow2x=3.30=90\Rightarrow x=90:2=45\)
+) \(\dfrac{3y}{60}=3\Rightarrow3y=3.60=180\Rightarrow y=180:3=60\)
+) \(\dfrac{z}{28}=3\Rightarrow z=3.28=84\)
Vậy ...