Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{1.69}\left(2\sqrt{x}+\sqrt{\dfrac{81}{121}}\right)=\dfrac{13}{10}\)
\(\Leftrightarrow2\sqrt{x}+\dfrac{9}{11}=1\)
\(\Leftrightarrow2\sqrt{x}=\dfrac{2}{11}\)
\(\Leftrightarrow\sqrt{x}=\dfrac{1}{11}\)
hay x=1/121
a) vì x và y tỷ lệ nghịch voeis nhau nên ta có công thức: x=a/y
=> 4=a/10
=>a=4x10
=>a=40
b) y=40/x
c) nếu x=5 => y=40/5=>y=8
nếu x= -8=> y=40/-8=>y=-5
HT
Khai triển :
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Ta có :
A nguyên
<=> 1+\(\frac{4}{\sqrt{x}-3}\) nguyên
<=> \(\frac{4}{\sqrt{x}-3}\) nguyên
<=> \(\sqrt{x}-3\inƯ_{\left(4\right)}\)
<=> \(\sqrt{x}-3\in\left\{1;2;4;-1;-2;-4\right\}\)
<=> \(\sqrt{x}\in\left\{4;5;7;2;1;-1\right\}\)
Mà \(\sqrt{x}\ge0\forall x\)
=> \(\sqrt{x}\in\left\{4;5;7;2;1\right\}\)
=> \(x\in\left\{16;25;49;4;1\right\}\)
Vậy \(x\in\left\{16;25;49;4;1\right\}\)
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=\frac{\sqrt{x}-3}{\sqrt{x}-3}+\frac{4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\in Z\)
\(\Rightarrow4⋮\sqrt{x}-3\)
\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Bài 1:
a, \(9^{x-1}=\dfrac{1}{9}\)
\(\Rightarrow9^{x-1}=9^{-1}\)
Vì \(9\ne-1;9\ne0;9\ne1\) nên
\(x-1=-1\Rightarrow x=0\)
Vậy \(x=0\)
b, \(\dfrac{1}{3}:\sqrt{7-3x^2}=\dfrac{2}{15}\)
\(\Rightarrow\sqrt{7-3x^2}=\dfrac{1}{3}:\dfrac{2}{15}\)
\(\Rightarrow\sqrt{7-3x^2}=\dfrac{5}{2}\)
\(\Rightarrow\left(\sqrt{7-3x^2}\right)^2=\left(\dfrac{5}{2}\right)^2\)
\(\Rightarrow7-3x^2=\dfrac{25}{4}\)
\(\Rightarrow3x^2=\dfrac{3}{4}\Rightarrow x^2=\dfrac{1}{4}\)
\(\Rightarrow x=\pm\dfrac{1}{2}\)
Vậy \(x=\pm\dfrac{1}{2}\)
Chúc bạn học tốt!!!
Bài 2:
Với mọi giá trị của \(x;y;z\in R\) ta có:
\(\sqrt{\left(x-\sqrt{2}\right)^2}\ge0;\sqrt{\left(y+\sqrt{2}\right)^2\ge}0;\left|x+y+z\right|\ge0\)
\(\Rightarrow\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|\ge0\) với mọi giá trị của \(x;y;z\in R\).
Để \(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\) thì
\(\left\{{}\begin{matrix}\sqrt{\left(x-\sqrt{2}\right)^2}=0\\\sqrt{\left(y+\sqrt{2}\right)^2}=0\\\left|x+y+z\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-\sqrt{2}=0\\y+\sqrt{2}=0\\x+y+z=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=-\sqrt{2}\\\sqrt{2}-\sqrt{2}+z=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=-\sqrt{2}\\z=0\end{matrix}\right.\)
Vậy \(x=\sqrt{2};y=-\sqrt{2};z=0\)
Chúc bạn học tốt!!!
\(x^2\ge0\)
\(\Rightarrow2015x\ge0\)
\(\Rightarrow1-x^2\ge1\)
\(\Rightarrow\sqrt{1-x^2}\ge1\)
\(\Rightarrow\dfrac{2017-2015x}{\sqrt{1-x^2}}\ge\dfrac{2017}{1}=2017\)
Dấu "=" xảy ra khi \(x^2=0\)
\(\Leftrightarrow x=0\)
Vậy \(P\min\limits=2017\Leftrightarrow x=0\)