\(\le1\)

\(\frac{1}{x^2+y^2...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2018

Đặt : A = 1/x^2+xy + 1/y^2+xy

Có : A = 1/x.(x+y) + 1/y.(x+y) = 1/x + 1/y ( vì x+y = 1 )

Áp dụng bđt 1/a + 1/b >= 4/a+b với mọi a,b > 0 cho x,y > 0 thì :

A >= 4/x+y = 4/1 = 4

Dấu "=" xảy ra <=> x=y=1/2

=> ĐPCM

Tk mk nha

11 tháng 11 2015

dùng hằng đẳng thúc cho mẫu rút gọn ta được 
\(\frac{1}{x^2+x+1}-\frac{1}{Y^2+y+1}+\frac{2\left(x+y\right)}{x^2y^2+3}\)=\(\frac{y^2+y+1-x^2-x-1}{\left(x^2+x+1\right)\left(y^2+y+1\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
=\(\frac{\left(y-x\right)\left(y+x\right)+\left(y-x\right)}{x^2y^2+x^2y+x^2+xy^2+xy+x+y^2+y+1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
=\(\frac{-2\left(x-y\right)}{xy\left(x+y\right)+\left(x+y\right)+1+x^2y^2+x^2+y^2+xy}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
=\(\frac{-2\left(x-y\right)}{2xy+x^2+y^2+x^2y^2+2}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
 

31 tháng 1 2015

Áp dụng bđt : Với a>0 ; b>0 thì 1/b + 1/b >=4/(a+b) ta có :

\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{4}{x^2+xy+y^2+xy}=\frac{4}{\left(x+y\right)^2}\ge4\)( vì 0 = < x + y <=1)

9 tháng 9 2019

1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)

\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

9 tháng 9 2019

b/

\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)

\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)

\(=16+8+20=44\)

\(\Rightarrow B\ge11\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

11 tháng 6 2018

Đặt:  \(A=\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}\)

Ta có: \(A=\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}=\frac{xy}{x}+\frac{xy}{y}+\frac{2}{x+y}\left(\text{Do: xy = 1}\right)\)

                                                         \(=x+y+\frac{2}{x+y}\)

                                                         \(=\frac{x+y}{2}+\frac{x+y}{2}+\frac{2}{x+y}\)

Đặt: \(B=\frac{x+y}{2};C=\frac{x+y}{2}+\frac{2}{x+y}\)

\(\Rightarrow A=B+C\)

Vì x, y > 0, áp dụng BĐT Cô-si, ta có:

\(\Rightarrow B=\frac{x+y}{2}\ge\sqrt{xy}=\sqrt{1}=1\) (1)

Ta có: x, y > 0 => x + y > 0

Áp dụng BĐT \(\frac{a}{b}+\frac{b}{a}\ge2\) với hai số dương x + y và 2

\(\Rightarrow C=\frac{x+y}{2}+\frac{2}{x+y}\ge2\) (2)

\(\text{Từ (1); (2) }\Rightarrow B+C=\frac{x+y}{2}+\frac{2}{x+y}\ge1+2\)

                      \(\Rightarrow A\ge3\)

                     \(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}\ge3\)

                      => ĐPCM

9 tháng 12 2017

có 12x^2 +12y^2-25xy=0

do x y khác 0 chia 2 vế cho y^2 được

\(12\left(\dfrac{x}{y}\right)^2-25\dfrac{x}{y}+12=0\) giải ra được x/y = 3/4 hoặc x/y=4/3

bạn thay x=3/4 y hoặc 4/3 y vào M thì tìm được giá trị M

2 tháng 5 2020

\(P=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)

\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{5}{4.\frac{\left(x+y\right)^2}{4}}\)

\(=4+2+5=11\)

Dấu "=" xảy ra khi x = y = \(\frac{1}{2}\)

4 tháng 5 2020

số gạo còn lại là 

3/3-1/3=2/3

dáp số 2/3

21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)