K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2020

a. Xét \(\Delta ABE\:va\:\Delta ACD\) có:

\(\left\{{}\begin{matrix}AB=AC\\\widehat{EAB}=\widehat{DAC}\\AD=AE\end{matrix}\right.\)

\(\Rightarrow\Delta ABE\: =\: \Delta ACD\)

\(\Rightarrow\)CD=BE

b. Ta có: \(\Rightarrow\Delta ABE\: =\: \Delta ACD\)

\(\Rightarrow\widehat{ACD}=\widehat{EBA}\)

Ta có: \(\widehat{DEC}+\widehat{ABE}=90^0\)

\(\Leftrightarrow\widehat{AEB}+\widehat{ACD}=90^0\)

\(\Rightarrow CD\perp BE\) (dpcm)

c. Xét \(\Delta EBC\) có:

\(\left\{{}\begin{matrix}CD\perp EB\\AB\perp EC\\D=AB\cap CD\end{matrix}\right.\)

\(\Rightarrow\) D là trực tâm của tam giác EBC

\(\Rightarrow EM\perp BC\)

\(\Rightarrow\Delta BMD\) vuông tại M

\(\widehat{DBM}=45^0\)

\(\Rightarrow\Delta BMD\) vuông cân tại M

\(\Rightarrow\) MB=MD

22 tháng 3 2020

Hỏi đáp Toán

Hình nè. Trên con đường thành công không có dấu chân của kẻ lười biếng; Nguyễn Lê Phước Thịnh; Vũ Minh Tuấn; Trần Thanh Phương; ?Amanda?

21 tháng 3 2020

liệu câu c có sai không bạn

21 tháng 3 2020

Không sai nha cậu

21 tháng 3 2020

câu c liệu sai đề không nhỉ bạn

21 tháng 3 2020

Đúng nhé. Cậu làm câu b giúp tôi được không?

Bài 2. Cho ABC có A = 120°. Tia phân giác của A cắt BC tại D. Tia phân giác củaADC cắt AC tại I. Gọi H, K, E lần lượt là hình chiếu của I trên đương thẳng AB,BC, AD. Chứng minh:a) AC là tia phân giác của DAH .b) IH = IKBài 5. Cho tam giác ABC vuông tại A. Từ một điểm K bất kì trên cạnh BC, vẽ KH AC (HAC). Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứngminh:a) Chứng minh AB //HKb) Chứng minh KAH...
Đọc tiếp

Bài 2. Cho ABC có A = 120°. Tia phân giác của A cắt BC tại D. Tia phân giác của
ADC cắt AC tại I. Gọi H, K, E lần lượt là hình chiếu của I trên đương thẳng AB,
BC, AD. Chứng minh:
a) AC là tia phân giác của DAH .
b) IH = IK
Bài 5. Cho tam giác ABC vuông tại A. Từ một điểm K bất kì trên cạnh BC, vẽ KH
 AC (HAC). Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng
minh:
a) Chứng minh AB //HK
b) Chứng minh KAH IAH 
c) Chứng minh AKI cân
Bài 7. Cho ABC, AB = AC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao
cho AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh:
a) BE = CD b) BMD = CME
c) Đường vuông góc với OE tại E cắt Ox, Oy lần lượt tại M, N. Chứng minh
MN / / AC //BD.
Bài 8. Cho xOy . Lấy các điểm A,B thuộc tia Ox sao cho OA > OB. Lấy các điểm C, D
thuộc Oy sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC
Chứng minh.:
a) AD = BC b) ABE = CDE
c) OE là tia phân giác của góc xOy

4
24 tháng 4 2020

mik ngu hình lắm xin lỗi nha

24 tháng 4 2020

ngu thì xen zô nói làm j

27 tháng 4 2019

4 tháng 5 2020

Bài này bạn tự kẻ hình giúp mình nha!

1. Xét tam giác AMB và tam giác CMD có:

AM = CM ( M là trung điểm của AC )

AMB = CMD ( 2 góc đối đỉnh )

BM = DM (gt)

=> tam giác AMB = tam giác CMD (c.g.c) (dpcm)

=> BAM = DCM ( 2 góc tương ứng)

=> DCM = 90o  => DC vuông góc với MC hay CD vuông góc với AC ( dpcm )

2. 

Xét tam giác AMD và tam giác CMB có:

AM = CM ( Theo 1.)

AMD = CMB ( 2 góc đối đỉnh )

DM = BM (gt)

=> tam giác AMD = tam giác CMB ( c.g.c)

=> AD = BC (2 cạnh tương ứng) (dpcm)

=> ADM = CBM (2 góc tương ứng)

Mà góc ADM và và góc CBM ở vị trí so le trong

=> AD // BC (dpcm)

3. Xét tam giác AEN và tam giác BCN có:

AN=BN ( N là trung điểm của AB)

ANE = BNC ( 2 góc đối đỉnh )

NE = NC (gt)

=> Tam giác AEN = tam giác BCN ( c.g.c)

=> AE = BC ( 2 cạnh tương ứng )        (1)

=>  EAN = CBN ( 2 góc tương ứng ) mà EAN và CBN ở vị trí so le trong => AE // BC         (2)

Theo 2. ta có :  +) AD=BC        (3)

                         +) AD // BC      (4)

Từ (1) và (3) Suy ra AE = AD  (5)

Từ (2) và (4) Suy ra A,E,D thẳng hàng    (6)

Từ (5) và (6) Suy ra A là trung điểm của ED (dpcm)

5 tháng 5 2020

sorry bn nha

mk lm xong rùi

20 tháng 3 2020

a) Chứng minh được: \(\Delta\)ABE =  \(\Delta\)ACD => CD = BE 

b ) \(\Delta\)ABE = \(\Delta\)ACD => ^ABE = ^ACD

Gọi H là giao điểm của CD và BE 

=> ^HBD = ^ACD 

Lại có: ^HDB = ^ADC ( đối đỉnh ) 

=> ^HBD + ^HDB = ^ACD + ^ADC = 90 độ 

=> ^DHB = 180o - ( ^HBD + ^HDB ) = 90 độ 

=> CD vuông BE 

c) Xét \(\Delta\)EAD có: ^EAD = 90 độ và  EA = ED => \(\Delta\)EAD vuông cân  => ^EDA = 45 độ 

=> ^MDB = ^EDA = 45 độ ( đối đỉnh )

Ta có: BD vuông AC ; CD vuông BE => D là trực tập \(\Delta\)ECB => ED vuông BC  => ^DMB = 90 độ 

Xét \(\Delta\)DMB có: ^DBM = 180o - ( ^MDB + ^DMB ) = 180 độ - ( 90o + 45) = 45o

=> ^MDB = ^DBM => \(\Delta\)DMB cân tại M => MB = MD

20 tháng 3 2020

Bài 2: Theo cách lớp 7.

H A C B K M

Kẻ BH vuông AC tại H => ^BAH = 180o - ^BAC = 180o - 120o = 60o 

=> \(\Delta\)HBA là nửa tam giác đều  ( học cái này chưa? )

=> AH = \(\frac{1}{2}\).AB = \(\frac{1}{2}\).4 = 2 ( cm ) 

Xét \(\Delta\)HAB vuông tại H có: AH = 2 cm  ; AB = 4 cm 

Dùng định lí Pitago => \(BH^2=AB^2-AH^2=4^2-2^2=12\)=> \(BH=2\sqrt{3}\)(cm)

Xét \(\Delta\)BHC vuông tại H có: \(BH=2\sqrt{3}\)cm ; HC = HA + AC = 2 + 6 = 8 cm

Theo định lí Pitago => \(BC^2=BH^2+HC^2=\left(2\sqrt{3}\right)^2+8^2=76\)=> \(BC=2\sqrt{19}\)( cm )

Vì M là trung điểm BC => \(BM=\sqrt{19}\)cm

Kẻ AK vuông BC tại K 

Ta có: \(S\left(ABC\right)=\frac{1}{2}.BH.AC=\frac{1}{2}AK.BC\)( diện tích tam giác ABC )

=> \(BH.AC=AK.BC\)=> \(2\sqrt{3}.6=AK.2\sqrt{19}\Rightarrow AK=\frac{6\sqrt{57}}{19}\)cm

Xét \(\Delta\)BAK vuông tại K có: \(AB=4cm;AK=\frac{6\sqrt{57}}{19}\)cm

Theo định lí Pitago => \(BK^2=AB^2-AK^2\)=> \(BK=\frac{14\sqrt{19}}{19}\)cm

=>KM = BM - BK = \(\sqrt{19}-\frac{14\sqrt{19}}{19}=\frac{5\sqrt{19}}{19}\)cm

Xét \(\Delta\)AKM có: \(KM=\frac{5\sqrt{19}}{19}\)cm và \(AK=\frac{6\sqrt{57}}{19}\)cm 

=> \(AM^2=AK^2+KM^2=\left(\frac{5\sqrt{19}}{19}\right)^2+\left(\frac{6\sqrt{57}}{19}\right)^2=7\)

=> \(AM=\sqrt{7}\)

10 tháng 7 2019

Tham khảo :

Câu hỏi của nguyen thi thom - Toán lớp 7 - Học toán với OnlineMath

Học tốt!!!

10 tháng 7 2019

Câu hỏi của Chi Chi - Toán lớp 7 - Học toán với OnlineMath

Tham khảo tại link trên.

10 tháng 7 2019

A B C D E M

10 tháng 7 2019

a) Xét \(\Delta EAB\)và \(\Delta DAC\)có:

      \(AE=AD\)(gt)

     \(\widehat{EAB}=\widehat{DAC}\)(đối đỉnh)

     \(AB=AC\)(Do tam giác ABC cân tại A)

Suy ra \(\Delta EAB=\Delta DAC\left(c.g.c\right)\)

\(\Rightarrow BE=CD\)(hai cạnh tương ứng)