Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này bạn tự kẻ hình giúp mình nha!
1. Xét tam giác AMB và tam giác CMD có:
AM = CM ( M là trung điểm của AC )
AMB = CMD ( 2 góc đối đỉnh )
BM = DM (gt)
=> tam giác AMB = tam giác CMD (c.g.c) (dpcm)
=> BAM = DCM ( 2 góc tương ứng)
=> DCM = 90o => DC vuông góc với MC hay CD vuông góc với AC ( dpcm )
2.
Xét tam giác AMD và tam giác CMB có:
AM = CM ( Theo 1.)
AMD = CMB ( 2 góc đối đỉnh )
DM = BM (gt)
=> tam giác AMD = tam giác CMB ( c.g.c)
=> AD = BC (2 cạnh tương ứng) (dpcm)
=> ADM = CBM (2 góc tương ứng)
Mà góc ADM và và góc CBM ở vị trí so le trong
=> AD // BC (dpcm)
3. Xét tam giác AEN và tam giác BCN có:
AN=BN ( N là trung điểm của AB)
ANE = BNC ( 2 góc đối đỉnh )
NE = NC (gt)
=> Tam giác AEN = tam giác BCN ( c.g.c)
=> AE = BC ( 2 cạnh tương ứng ) (1)
=> EAN = CBN ( 2 góc tương ứng ) mà EAN và CBN ở vị trí so le trong => AE // BC (2)
Theo 2. ta có : +) AD=BC (3)
+) AD // BC (4)
Từ (1) và (3) Suy ra AE = AD (5)
Từ (2) và (4) Suy ra A,E,D thẳng hàng (6)
Từ (5) và (6) Suy ra A là trung điểm của ED (dpcm)
a) Chứng minh được: \(\Delta\)ABE = \(\Delta\)ACD => CD = BE
b ) \(\Delta\)ABE = \(\Delta\)ACD => ^ABE = ^ACD
Gọi H là giao điểm của CD và BE
=> ^HBD = ^ACD
Lại có: ^HDB = ^ADC ( đối đỉnh )
=> ^HBD + ^HDB = ^ACD + ^ADC = 90 độ
=> ^DHB = 180o - ( ^HBD + ^HDB ) = 90 độ
=> CD vuông BE
c) Xét \(\Delta\)EAD có: ^EAD = 90 độ và EA = ED => \(\Delta\)EAD vuông cân => ^EDA = 45 độ
=> ^MDB = ^EDA = 45 độ ( đối đỉnh )
Ta có: BD vuông AC ; CD vuông BE => D là trực tập \(\Delta\)ECB => ED vuông BC => ^DMB = 90 độ
Xét \(\Delta\)DMB có: ^DBM = 180o - ( ^MDB + ^DMB ) = 180 độ - ( 90o + 45o ) = 45o
=> ^MDB = ^DBM => \(\Delta\)DMB cân tại M => MB = MD
Bài 2: Theo cách lớp 7.
H A C B K M
Kẻ BH vuông AC tại H => ^BAH = 180o - ^BAC = 180o - 120o = 60o
=> \(\Delta\)HBA là nửa tam giác đều ( học cái này chưa? )
=> AH = \(\frac{1}{2}\).AB = \(\frac{1}{2}\).4 = 2 ( cm )
Xét \(\Delta\)HAB vuông tại H có: AH = 2 cm ; AB = 4 cm
Dùng định lí Pitago => \(BH^2=AB^2-AH^2=4^2-2^2=12\)=> \(BH=2\sqrt{3}\)(cm)
Xét \(\Delta\)BHC vuông tại H có: \(BH=2\sqrt{3}\)cm ; HC = HA + AC = 2 + 6 = 8 cm
Theo định lí Pitago => \(BC^2=BH^2+HC^2=\left(2\sqrt{3}\right)^2+8^2=76\)=> \(BC=2\sqrt{19}\)( cm )
Vì M là trung điểm BC => \(BM=\sqrt{19}\)cm
Kẻ AK vuông BC tại K
Ta có: \(S\left(ABC\right)=\frac{1}{2}.BH.AC=\frac{1}{2}AK.BC\)( diện tích tam giác ABC )
=> \(BH.AC=AK.BC\)=> \(2\sqrt{3}.6=AK.2\sqrt{19}\Rightarrow AK=\frac{6\sqrt{57}}{19}\)cm
Xét \(\Delta\)BAK vuông tại K có: \(AB=4cm;AK=\frac{6\sqrt{57}}{19}\)cm
Theo định lí Pitago => \(BK^2=AB^2-AK^2\)=> \(BK=\frac{14\sqrt{19}}{19}\)cm
=>KM = BM - BK = \(\sqrt{19}-\frac{14\sqrt{19}}{19}=\frac{5\sqrt{19}}{19}\)cm
Xét \(\Delta\)AKM có: \(KM=\frac{5\sqrt{19}}{19}\)cm và \(AK=\frac{6\sqrt{57}}{19}\)cm
=> \(AM^2=AK^2+KM^2=\left(\frac{5\sqrt{19}}{19}\right)^2+\left(\frac{6\sqrt{57}}{19}\right)^2=7\)
=> \(AM=\sqrt{7}\)
Tham khảo :
Câu hỏi của nguyen thi thom - Toán lớp 7 - Học toán với OnlineMath
Học tốt!!!
Câu hỏi của Chi Chi - Toán lớp 7 - Học toán với OnlineMath
Tham khảo tại link trên.
a) Xét \(\Delta EAB\)và \(\Delta DAC\)có:
\(AE=AD\)(gt)
\(\widehat{EAB}=\widehat{DAC}\)(đối đỉnh)
\(AB=AC\)(Do tam giác ABC cân tại A)
Suy ra \(\Delta EAB=\Delta DAC\left(c.g.c\right)\)
\(\Rightarrow BE=CD\)(hai cạnh tương ứng)
a. Xét \(\Delta ABE\:va\:\Delta ACD\) có:
\(\left\{{}\begin{matrix}AB=AC\\\widehat{EAB}=\widehat{DAC}\\AD=AE\end{matrix}\right.\)
\(\Rightarrow\Delta ABE\: =\: \Delta ACD\)
\(\Rightarrow\)CD=BE
b. Ta có: \(\Rightarrow\Delta ABE\: =\: \Delta ACD\)
\(\Rightarrow\widehat{ACD}=\widehat{EBA}\)
Ta có: \(\widehat{DEC}+\widehat{ABE}=90^0\)
\(\Leftrightarrow\widehat{AEB}+\widehat{ACD}=90^0\)
\(\Rightarrow CD\perp BE\) (dpcm)
c. Xét \(\Delta EBC\) có:
\(\left\{{}\begin{matrix}CD\perp EB\\AB\perp EC\\D=AB\cap CD\end{matrix}\right.\)
\(\Rightarrow\) D là trực tâm của tam giác EBC
\(\Rightarrow EM\perp BC\)
\(\Rightarrow\Delta BMD\) vuông tại M
Mà \(\widehat{DBM}=45^0\)
\(\Rightarrow\Delta BMD\) vuông cân tại M
\(\Rightarrow\) MB=MD
Hình nè. Trên con đường thành công không có dấu chân của kẻ lười biếng; Nguyễn Lê Phước Thịnh; Vũ Minh Tuấn; Trần Thanh Phương; ?Amanda?