Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
A A A B B B C C C H H H M M M D D D I I I a/Xét tứ giác BHCD có M đồng thời là trung điểm của cả HD và BC
Do đó BHCD là hình bình hành \(\Rightarrow BH//CD,CH//BD\)
Mặt khác vì ta có H là trực tâm của tam giác ABC nên \(BH\perp AC,CH\perp AB\)
Suy ra \(BD\perp AB,CD\perp AC\Rightarrow\Delta ABD,\Delta ACD\)là tam giác vuông
b/Xét \(\Delta ABD,\Delta ACD:\widehat{ABD}=\widehat{ACD}=90^0\);I là trung điểm của cạnh huyền chung AD
Suy ra \(IA=IB=IC=ID\)
Bài 2 α = 60° α = 60° α = 60° A A A B B B C C C D D D E E E a/Vì AD=CD(gt) nên D nằm trên trung trực của đoạn AC suy ra \(\widehat{DAC}=\widehat{ECA}=90^0-60^0=30^0\)
Suy ra \(\widehat{BAD}=90^0+\widehat{DAC}=120^0\)
b/Trước hết ta thấy ABCD đã là hình thang,nên ta đi chứng minh \(\widehat{BCD}=\widehat{ABC}=60^0\)
Ta có \(\widehat{BCD}=\widehat{DCA}+\widehat{ACB}=\widehat{DAC}+30^0=30^0+30^0=60^0\)
Vậy ABCD là hình thang cân
c/Ta có \(\Delta BCE:AE=BE,\widehat{ABE}=60^0\Rightarrow AE=BE=AB\)
\(\widehat{ADE}=\frac{1}{2}.\widehat{ADC}=60^0;\widehat{BAD}=120^0=\widehat{BED}\)
Suy ra ABED là hình bình hành
Mà ta còn có AB=EB
Vậy ABED là hình thoi
"trên tia đối của tia EH lấy điểm P ..." bài này có sai đề không nhỉ, không thể tồn tại hai điểm P, Q thì làm sao vẽ hình được e
1/. Xét Tứ giác AEHF, có:
E = 90 (EH vuong góc AB)
F = 90 (HF vuong AC)
A = 90 (ABC vuong tai A)
=> AEHF là hcn
2/. Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM =1/2BC => AM =MB = MC = 2,5 cm
=> BC = 2,5 x2 = 5cm
Áp dụng định lý Py-ta-go vào tam giác vuông ABC, có:
AB^2 +AC^2 =BC^2
9+AC^2 = 25
=> AC^2 = 25-9 = 16
=> AC =4cm
Diện tích tam giác ABC: 1/2AB.AC = 1/2(.3.4 )= 6cm^2
3/. Gọi K là giao điểm của EF và AM, J là giao điểm của EF và AH
CM: góc AEK = góc ABC
Vì J là giao điểm của 2 đường chéo trong hcn AEHF => ẠJ = JH = Ẹ = JF
=> tam giác EJA cân tại J => AEJ = EAH (1)
Xét tam giác vuông ABH => EAH +ABC = 90
Xét tam giác vuông ABC=> ABC + ACB = 90
=> EAH = ACB và (1) => ACB = AEJ (2)
Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM = BM = MC
=> tam giác ABM cân tại M => EAK = ABC (3)
Xét tam giác EAK: có: AEJ + EAK = ACB + ABC = 90 ( do 2 và 3)
=> tam giác AEK vuong tại K
Hay AM vuông EF
4/. Vì A đới xứng với I qua BC => AI vuông góc với BC . Mà AH vuong với BC => A. H , I thẳng hàng . hay H là trung điểm của AI
Xét tam giác AID, có:
H là trung ddierm của AI, M là trung điểm của AD
=> HM là đường trung bình của tam giác AID => HM // ID
=> tứ giác BIDC là hình thang
Xét tam giác ABI , có: BH vừa là đường cao vừa là đường trung tuyến => ABI cân tại B => IBH = ABH (BH là đường phân giác) (4)
Xét tứ giác ABCD có:
M là trung điểm BC
M là trung điểm AD
M = BC giao AD
=> ABCD là hình bình hành và A = 90 => ABCD là hình chữ nhật
=> DCB = ABC (DC // AB và solle trong) (5)
Từ 4 và 5 => BCD = IBC (= ABC) => Hình thang BIDC là hình thang cân
1/. Xét Tứ giác AEHF, có:
E = 90 (EH vuong góc AB)
F = 90 (HF vuong AC)
A = 90 (ABC vuong tai A)
=> AEHF là hcn
2/. Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM =1/2BC => AM =MB = MC = 2,5 cm
=> BC = 2,5 x2 = 5cm
Áp dụng định lý Py-ta-go vào tam giác vuông ABC, có:
AB^2 +AC^2 =BC^2
9+AC^2 = 25
=> AC^2 = 25-9 = 16
=> AC =4cm
Diện tích tam giác ABC: 1/2AB.AC = 1/2(.3.4 )= 6cm^2
3/.
1: Xét tứ giác AEHF có góc AEH=góc AFH=góc FAE=90 độ
nên AEHF là hình chữ nhật
2: AM=2,5cm nên BC=5cm
=>AC=4cm
S=3x4/2=6cm2
3:
Xét tứ giác AEHF có góc AEH=góc AFH=góc FAE=90 độ
nên AEHF là hình chữ nhật
Suy ra: góc AFE=góc AHE=góc ABC
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MC
=>góc MAC=góc ACB
=>góc MAC+góc EFA=90 độ
=>AM vuông góc với EF
4:
Xét ΔADI có
H,M lần lượt là trung điểm của AI và AD
nên HM là đường trung bình
=>HM//DI
=>DI//BC
Xét ΔCIA có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCIA cân tại C
=>CI=CA=DB
=>BIDC là hình thang cân
a) Ta có: góc ABC = góc ADC (ABCD là hình vuông)
=> góc ABE = góc ADC (=90o, E ϵ BC)
Mà: góc ADF = góc ADC (= 90o,F ϵ tia đối tia DC)
Do đó: góc ABE = góc ADF (= 90o)