K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2023

a: Sửa đề: ΔAEF vuông cân tại A

Xét ΔADF vuông tại D và ΔABE vuông tại B có

AD=AB

DF=BE

Do đó: ΔADF=ΔABE

=>AF=AE và \(\widehat{DAF}=\widehat{BAE}\)

mà \(\widehat{BAE}+\widehat{DAE}=90^0\)

nên \(\widehat{DAF}+\widehat{DAE}=90^0\)

=>\(\widehat{FAE}=90^0\)

Xét ΔAEF có \(\widehat{FAE}=90^0\) và AE=AF

nên ΔAEF vuông cân tại A

b: Gọi giao điểm của AH với EF là M

H đối xứng A qua EF

=>EF là đường trung trực của HA

=>EH=EA và FH=FA

mà AH=AE

nên EH=EA=FH=FA

Xét tứ giác AEHF có

AE=HE=HF=FA

nên AEHF là hình thoi

Hình thoi AEHF có \(\widehat{FAE}=90^0\)

nên AEHF là hình vuông

Bài 1 : Cho tam giác nhọn ABC , gọi H là trực tâm tam giác , M là trung điểm BC . Gọi D là điểm đối xứng của H qua M .a ) Chứng minhcác tam giác ABD và ACD vuôngb ) Gọi I là trung điểm AD . Chứng minh IA = IB =IC = IDBài 2 : Cho tam giác ABC vuông tại A có góc B bằng 60 độ ,  kẻ Ax song song BC . Trên tia Ax lấy điểm D sao cho : AD =DCa ) Tính các góc BAD và góc DACb ) Chứng minh tứ giác ABCD là hình thang cân c )...
Đọc tiếp

Bài 1 : Cho tam giác nhọn ABC , gọi H là trực tâm tam giác , M là trung điểm BC . Gọi D là điểm đối xứng của H qua M .

a ) Chứng minhcác tam giác ABD và ACD vuông

b ) Gọi I là trung điểm AD . Chứng minh IA = IB =IC = ID

Bài 2 : Cho tam giác ABC vuông tại A có góc B bằng 60 độ ,  kẻ Ax song song BC . Trên tia Ax lấy điểm D sao cho : AD =DC

a ) Tính các góc BAD và góc DAC

b ) Chứng minh tứ giác ABCD là hình thang cân 

c ) Gọi E là trung điểm BC . Chứng minh ADEB là hình thoi

Bài 3 :  Cho hình vuông ABCD , E là trung điểm trên cạnh DC , F là điểm trên tia đối tia BC sao cho BF = DE .

a) Cminh : tam giác AEF vuông cân 

b ) Gọi I là trung điểm EF . Chứng minh I thuộc BD 

c ) Lấy K đối xứng A qua I . Chứng minh AEFK là hình vuông ( Hướng dẫn : Từ E kẻ EP // BC , P thuộc BD 

3
30 tháng 10 2019

Bài 1

A A A B B B C C C H H H M M M D D D I I I a/Xét tứ giác BHCD có M đồng thời là trung điểm của cả HD và BC 

Do đó BHCD là hình bình hành \(\Rightarrow BH//CD,CH//BD\)

Mặt khác vì ta có H là trực tâm của tam giác ABC nên \(BH\perp AC,CH\perp AB\)

Suy ra \(BD\perp AB,CD\perp AC\Rightarrow\Delta ABD,\Delta ACD\)là tam giác vuông 

b/Xét \(\Delta ABD,\Delta ACD:\widehat{ABD}=\widehat{ACD}=90^0\);I là trung điểm của cạnh huyền chung AD

Suy ra \(IA=IB=IC=ID\)

30 tháng 10 2019

Bài 2 α = 60° α = 60° α = 60° A A A B B B C C C D D D E E E a/Vì AD=CD(gt) nên D nằm trên trung trực của đoạn AC suy ra \(\widehat{DAC}=\widehat{ECA}=90^0-60^0=30^0\)

Suy ra \(\widehat{BAD}=90^0+\widehat{DAC}=120^0\)

b/Trước hết ta thấy ABCD đã là hình thang,nên ta đi chứng minh \(\widehat{BCD}=\widehat{ABC}=60^0\)

Ta có \(\widehat{BCD}=\widehat{DCA}+\widehat{ACB}=\widehat{DAC}+30^0=30^0+30^0=60^0\)

Vậy ABCD là hình thang cân

c/Ta có \(\Delta BCE:AE=BE,\widehat{ABE}=60^0\Rightarrow AE=BE=AB\)

\(\widehat{ADE}=\frac{1}{2}.\widehat{ADC}=60^0;\widehat{BAD}=120^0=\widehat{BED}\)

Suy ra ABED là hình bình hành 

Mà ta còn có AB=EB 

Vậy ABED là hình thoi

9 tháng 3 2018

a) DDAE = DBAF (c.g.c)

⇒   D A E ^ = B A F ^  và AE = AF

Mà E A D ^ + E A B ^ = 90 0   = >   E A B ^ + B A F ^ = 90 0  

Þ DAEF vuông cân tại A.

b) DEAF vuông cân nên IA = IE = FI (1); DCFE vuông có IC là đường trung tuyến Þ IE = IC = IF (2);

Từ (1) và (2) suy ra Þ IA = IC nên I thuộc trung trực của AC hay I thuộc BD.

c) Do K đối xứng với A qua I nên I là trung điểm của AK.

Mà I là trung điểm của EF(gt) nên AFKE là hình bình hành, DAEF vuông cân tại A nên AI ^ EF.

Vậy AFKE là hình vuông.

26 tháng 12 2021

a, Xét 2 tam giác vuông ΔADE và ΔABF có:

AD = AB (ABCD là hình vuông); DE = BF (gt)

⇒ ΔADE = ΔABF (2 cạnh góc vuông)

⇒ AE = AF (1) và ˆDAEDAE^ = ˆBAFBAF^ 

mà ˆDAEDAE^ + ˆBAEBAE^ = 90o90o

⇒ ˆBAFBAF^ + ˆBAEBAE^ = 90o90o

⇒ ˆEAFEAF^ = 90o90o (2)

Từ (1) và (2) suy ra ΔEAF vuông cân (đpcm)

b, ABCD là hình vuông ⇒ BA = BC và DA = DC

⇒ BD là đường trung trực của AC (3)

ΔEAF vuông cân tại A có AI là trung tuyến ứng với cạnh huyền 

⇒ AI = 1212EF

ΔCEF vuông tại C có CI là trung tuyến ứng với cạnh huyền

⇒ CI = 1212EF

⇒ CI = AI ⇒ I thuộc đường trung trực của AC (4)

Từ (3) và (4) suy ra: I thuộc BD (đpcm)

d, Tứ giác AEKF có 2 đường chéo AK, EF cắt nhau tại I là trung điểm mỗi đường

⇒ AEKF là hình bình hành

mà AE = AF và ˆEAFEAF^ = 90o90o

⇒ AEKF là hình vuông (đpcm)