K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2017

Từ đề bài, ta có:

\(10^2A=10^2+10^4+10^6+...+10^{2018}\)

\(\Rightarrow100A-A=99A=10^{2018}-1\)

\(\Rightarrow A=\dfrac{10^{2018}-1}{99}\)

22 tháng 3 2017

A = 1 + 102 + 104 + 106 + ... + 102016
\(\Rightarrow\)10A = 10 + 103 + 105 + ... + 102017
\(\Rightarrow\) 10A - A = 102017 - 1
\(\Rightarrow\) 9A = 102017 - 1
\(\Rightarrow\) A = \(\dfrac{10^{2017}-1}{9}\)

23 tháng 10 2017

Bỏ mũ 2006 nha mọi người!

10 tháng 8 2018

Tuy có vẻ hơi muộn nhưng thôi leuleu

Nếu A là số tự nhiên ⇒ \(\dfrac{1}{10}\left(7^{2004}-3^{92^{94}}\right)\in N\)

\(\Rightarrow7^{2004}-3^{92^{94}}⋮10\)

Thật vậy, ta có :

72004 với lũy thừa là 2004 ⋮ 4

⇒ 72004 = ( .......... 9 )

392^94 với lũy thừa là 9294 mà 92 ⋮ 4 ⇒ 9294 ⋮ 4

⇒ 392^94 = ( .......... 9 )

⇒ 72004 - 392^94 = ( .......... 9 ) - ( ............ 9) = ( ........... 0 ) ⋮ 10

\(\dfrac{1}{10}\left(7^{2004}-3^{92^{94}}\right)\in N\)

A=1/10.(72004-392^94) là số tự nhiên.

23 tháng 10 2017

\(\left(2^{19}.27^3+15.4^9.9^4\right):\left(6^9.2^{10}+12^{10}\right)\)

\(=\left[2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4\right]:\left[2^9.3^9.2^{10}+2^{10}.6^{10}\right]\)

\(=\left(2^{19}.3^9+3.5.2^{18}.3^8\right):\left(2^{19}.3^9+2^{10}.2^{10}.3^{10}\right)\)

\(=\left(2^{19}.3^9+5.3^9.2^{18}\right):\left(2^{19}.3^9+2^{20}.3^{10}\right)\)

\(=2^{18}.3^9.\left(1.2+5\right):2^{19}.3^9.\left(1+2.3\right)\)

\(=\left(2^{18}.3^9.7\right):\left(2^{18}.2.3^9.7\right)\)

\(=1:2\)

\(=0.5\)

11 tháng 4 2017

Giống nhau:

- Đều là các số tự nhiên

Khác nhau:

-số nguyên tố tự nhiên chỉ có hai ước là 1 và chính nó

-Hợp số là số tự nhiên có nhiều hơn hai ước

Tích của hai số nguyên tố là hợp số bởi ngoài ước là 1 ra nó còn có ước là hai số nguyên tố đó nữa.

11 tháng 4 2017

thanks

1 tháng 5 2017

Ta có:A-1=\(\dfrac{10^8+2}{10^8-1}-1=\dfrac{10^8+2-10^8+1}{10^8-1}=\dfrac{3}{10^8-1}\)

B-1=\(\dfrac{10^8}{10^8-3}-1=\dfrac{10^8-10^8+3}{10^8-3}=\dfrac{3}{10^8-3}\)

Do \(\dfrac{3}{10^8-1}>\dfrac{3}{10^8-3}\)

=>A-1>B-1

<=>A>B

Vậy...

2 tháng 5 2017

mik cũng đg cần mà bnXuân Tuấn Trịnh làm đúng ko z

16 tháng 7 2017

Ta có: \(\left|x-y\right|+\left|x-1\right|\ge0\)

\(\Rightarrow A=\left|x-y\right|+\left|x-1\right|+2017\ge2017\)

Dấu " = " khi \(\left\{{}\begin{matrix}\left|x-y\right|=0\\\left|x-1\right|=0\end{matrix}\right.\Rightarrow x=y=1\)

Vậy \(MIN_A=2017\) khi x = y = 1

4 tháng 2 2017

2-->8: 4CS

10-->98: 45.2=90CS

100-->998: 450.3=1350CS

1000--> ?: ?.4=?CS

Số cuối cùng của dãy là:

{[(2016-4-90-1350):4]-1}.2+1000=1284

=>CS thứ 2016 của dãy là 4

4 tháng 2 2017

so do la 4032

leuleu

18 tháng 7 2017

\(=>9x+2=60:3\)

\(=>9x+2=20\)

\(=>9x=20-2\)

\(=>9x=18\)

\(=>x=18:2=2\)

Vậy số cần tìm là 2

CHÚC BẠN HỌC TỐT............

18 tháng 7 2017

( 9x + 2 ) . 3 = 60

( 9x + 2 ) = 60 : 3

9x + 2 = 20

9x = 20 - 2

9x =18

x = 18 : 9

x = 2

23 tháng 10 2017

Chứng Minh:C=\(3^0+3^2+3^4+...+3^{2002}⋮7\)

Nhân C với \(3^2\)ta có:

\(9S=3^2+3^4+3^6+...+3^{2004}\)

\(\Rightarrow9S-S=\left(3^2+3^4+...+3^{2004}\right)-\left(3^0+3^2+3^4+...+3^{2002}\right)\)

\(\Rightarrow8S=3^{2004}-1\)

\(\Rightarrow S=\dfrac{3^{2004}-1}{8}\)

Chứng minh:

Ta có:\(3^{2004}-1=\left(3^6\right)^{334-1}=\left(3^6-1\right).a=7.104.a\)

\(\)UCLN(7;8)=1

\(\Rightarrow S⋮7\)

23 tháng 10 2017

Sửa lại 1 chút!

Chứng minh: C= \(3^0+3^2+3^4+3^6+...+3^{2002}\) chia hết cho 7

6 tháng 3 2017

\(M=\dfrac{5^3}{1\cdot6}+\dfrac{5^3}{6\cdot11}+...+\dfrac{5^3}{26\cdot31}\)

\(=5^2\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{26\cdot31}\right)\)

\(=5^2\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{26}-\dfrac{1}{31}\right)\)

\(=5^2\left(1-\dfrac{1}{31}\right)\)\(=25\cdot\dfrac{30}{31}=\dfrac{750}{31}\)