Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\text{Nếu p;q cùng lẻ thì:}7pq^2+p\text{ chẵn};q^3+43p^3+1\text{ lẻ}\Rightarrow\text{có ít nhất 1 số chẵn}\)
\(+,p=2\Rightarrow14q^2+2=q^3+345\Leftrightarrow14q^2=q^3+343\)
\(\Leftrightarrow q^2\left(14-q\right)=343\text{ đến đây thì :))}\)
\(+,q=2\Rightarrow29p=9+43p^3\Leftrightarrow29p-43p^3=9\text{loại}\)
\(+,p=q=2\Rightarrow7.8+2=8+43.8+1\left(\text{loại}\right)\)
1. Tổng các hệ số của đa thức là: 12004.22005=22005
2.Cần chứng minh x4+x3+x2+x+1=0 vô nghiệm.
Nhận thấy x = 1 không là nghiệm của phương trình .
Nhân cả hai vế của pt cho (x−1)≠0 được :
(x−1)(x4+x3+x2+x+1)=0⇔x5−1=0⇔x=1(vô lí)
Vậy pt trên vô nghiệm.
1. Tổng các hệ số của đa thức là:
12014 . 22015 = 22015
2 . Cần chứng minh.
\(x4 + x3 + x2 + x + 1 = 0\)
Vô nghiệm.
Ta nhận thấy \(x + 1 \) không là nghiệm của phương trình.
Nhân cả hai vế của phương trình cho:
\(( x - 1 ) \) \(\ne\) \(0\) được :
\(( x-1). (x4+x3+x2+x+1)=0\)
\(\Leftrightarrow\)\(5x-1=0\) \(\Leftrightarrow\) \(x = 1\)
Vô lí.
Vậy phương trình trên vô nghiệm.
cậu chỉ ra mk xem cách giải cái bài này nghĩ ma k ra ak?
Dễ dàng nhận ra cả 2 số đều dương, đặt \(\frac{5n^2+n+1}{n^2-n+1}=k\in Z^+\)
\(\Leftrightarrow5n^2+n+1=kn^2-kn+k\)
\(\Leftrightarrow\left(k-5\right)n^2-\left(k+1\right)n+k-1=0\)
\(k=5\) ko có n nguyên thỏa mãn
\(k\ne5\Rightarrow\Delta=\left(k+1\right)^2-4\left(k-5\right)\left(k-1\right)\)
\(=-3k^2+26k-19\) \(\Rightarrow0< k< 8\)
Mặt khác do k nguyên; n nguyên \(\Rightarrow-3n^2+26k-19\) phải là số chính phương
Thay các giá trị \(k\in\left(0;8\right)\) vào thấy \(k=\left\{1;7\right\}\) thỏa mãn (loại 5)
- Với \(k=1\Rightarrow n=0\)
- Với \(k=7\Rightarrow n=\left\{1;3\right\}\)
A=19n^n +5n^2 +1890n +2006
m =n -1 ; n>1 => m >0
A=19(m+1)^(m+1) + 5(m+1)^2 +1890(m+1) +2006
A=19(m+1)^(m+1) + 5 (m^2 +2m+1) +1890 m+ 1890 +2006
m =1 phần dư =0
m >=2
\(\left(m+1\right)^{m+1}=\left(m+1-1\right)\left[\left(m+1\right)^{\left(m+1\right)-1}+..\left(m+1\right)+1\right]=m.f\left(m\right)=m^2.g\left(n\right)+2m\)
\(A=m^2\left[19.g\left(n\right)+5\right]+\left(2.19+10+1890\right)m+1890+2006\)
phân dư A chia cho [m^2 =(n-1)^2 ]:
R=1938n +68