Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có: \(\frac{-4}{7}-\frac{11}{19}+\frac{13}{19}\cdot\frac{-3}{7}+\frac{2}{19}:\frac{-7}{4}\)
\(=\frac{-4}{7}-\frac{11}{19}-\frac{39}{133}-\frac{8}{133}\)
\(=\frac{-76}{133}-\frac{77}{133}-\frac{39}{133}-\frac{8}{133}\)
\(=\frac{-200}{133}\)
2) Ta có: \(\left(\frac{-4}{9}+\frac{3}{5}\right):\frac{1}{\frac{1}{5}}+\left(\frac{1}{5}-\frac{5}{9}\right):\frac{1}{\frac{1}{5}}\)
\(=\left(\frac{-4}{9}+\frac{3}{5}\right)\cdot\frac{1}{5}+\left(\frac{1}{5}-\frac{5}{9}\right)\cdot\frac{1}{5}\)
\(=\frac{1}{5}\left(\frac{-4}{9}+\frac{3}{5}+\frac{1}{5}-\frac{5}{9}\right)\)
\(=\frac{1}{5}\left(-1+\frac{4}{5}\right)\)
\(=\frac{1}{5}\cdot\frac{-1}{5}=\frac{-1}{25}\)
3) Ta có: \(\frac{4}{5}-\left(-\frac{2}{7}\right)-\frac{7}{10}\)
\(=\frac{4}{5}+\frac{2}{7}-\frac{7}{10}\)
\(=\frac{56}{70}+\frac{20}{70}-\frac{49}{70}\)
\(=\frac{27}{70}\)
4) Ta có: \(\frac{2}{7}-\left(-\frac{13}{15}+\frac{4}{9}\right)-\left(\frac{5}{9}-\frac{2}{15}\right)\)
\(=\frac{2}{7}+\frac{13}{15}-\frac{4}{9}-\frac{5}{9}+\frac{2}{15}\)
\(=\frac{2}{7}+1-1=\frac{2}{7}\)
a: \(\dfrac{x-6}{7}+\dfrac{x-7}{8}+\dfrac{x-8}{9}=\dfrac{x-9}{10}+\dfrac{x-10}{11}+\dfrac{x-11}{12}\)
\(\Leftrightarrow\left(\dfrac{x-6}{7}+1\right)+\left(\dfrac{x-7}{8}+1\right)+\left(\dfrac{x-8}{9}+1\right)=\left(\dfrac{x-9}{10}+1\right)+\left(\dfrac{x-10}{11}+1\right)+\left(\dfrac{x-11}{12}+1\right)\)
=>x+1=0
hay x=-1
c: |x-2|=13
=>x-2=13 hoặc x-2=-13
=>x=15 hoặc x=-11
d: \(\Leftrightarrow3\left|x-2\right|+4\left|x-2\right|=2-\dfrac{1}{3}=\dfrac{5}{3}\)
=>7|x-2|=5/3
=>|x-2|=5/21
=>x-2=5/21 hoặc x-2=-5/21
=>x=47/21 hoặc x=37/21
b,\(D=2.\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{n.\left(n+2\right)}\right)\)
\(\Rightarrow D=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+2}\)
\(\Rightarrow D=1-\frac{1}{n+2}=\frac{n}{n+2}< \frac{n+2}{n+2}=1\left(1\right)\)
\(\Rightarrow D=\frac{n}{n+2}>0\left(2\right)\)
Từ (1);(2)\(\Rightarrow0< D< 1\)
\(\Rightarrowđpcm\)
a,\(C>0\)
\(C=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}< 9;\frac{1}{11}< 1\)
\(\Rightarrow0< A< 1\)
\(\Rightarrow A\notinℤ\)
c,\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
Ta quy đồng 3 số đầu
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>\frac{6.2}{12}=1\)
\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< \frac{6.2}{6}=2\)
\(1< E< 2\)
\(E\notinℤ\)
3: \(=\dfrac{13}{5}\left(-\dfrac{3}{14}+\dfrac{2}{5}+\dfrac{-11}{14}+\dfrac{3}{5}\right)\)
=0
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>