Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x+1\right)\left(x^2+1\right)}{\left(x-1\right)\left(x^2+x-1\right)}=\lim\limits_{x\rightarrow1}\frac{\left(x+1\right)\left(x^2+1\right)}{x^2+x-1}=\frac{4}{1}=4\)
\(b=\lim\limits_{x\rightarrow-1}\frac{\left(x+1\right)\left(x^4-x^3+x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\lim\limits_{x\rightarrow-1}\frac{x^4-x^3+x^2-x+1}{x^2-x+1}=\frac{5}{3}\)
\(c=\lim\limits_{x\rightarrow3}\frac{\left(x+1\right)\left(x-3\right)^2}{\left(x^2+1\right)\left(x^2-9\right)}=\lim\limits_{x\rightarrow3}\frac{\left(x+1\right)\left(x-3\right)}{\left(x^2+1\right)\left(x+3\right)}=\frac{0}{60}=0\)
\(d=\lim\limits_{x\rightarrow1}\frac{4x^6-5x^5+x}{x^2-2x+1}=\lim\limits_{x\rightarrow1}\frac{24x^5-25x^4+1}{2x-2}=\lim\limits_{x\rightarrow1}\frac{120x^4-100x^3}{2}=10\)
\(e=\lim\limits_{x\rightarrow1}\frac{mx^{m-1}}{nx^{n-1}}=\frac{m}{n}\)
\(f=\lim\limits_{x\rightarrow-2}\frac{\left(x+2\right)\left(x-2\right)\left(x^2+4\right)}{\left(x+2\right)x^2}=\lim\limits_{x\rightarrow-2}\frac{\left(x-2\right)\left(x^2+4\right)}{x^2}=-8\)
Hai câu d, e khai triển thì dài quá nên làm biếng sử dụng L'Hopital
16.
\(y'=\frac{\left(cos2x\right)'}{2\sqrt{cos2x}}=\frac{-2sin2x}{2\sqrt{cos2x}}=-\frac{sin2x}{\sqrt{cos2x}}\)
17.
\(y'=4x^3-\frac{1}{x^2}-\frac{1}{2\sqrt{x}}\)
18.
\(y'=3x^2-2x\)
\(y'\left(-2\right)=16;y\left(-2\right)=-12\)
Pttt: \(y=16\left(x+2\right)-12\Leftrightarrow y=16x+20\)
19.
\(y'=-\frac{1}{x^2}=-x^{-2}\)
\(y''=2x^{-3}=\frac{2}{x^3}\)
20.
\(\left(cotx\right)'=-\frac{1}{sin^2x}\)
21.
\(y'=1+\frac{4}{x^2}=\frac{x^2+4}{x^2}\)
22.
\(lim\left(3^n\right)=+\infty\)
11.
\(\lim\limits_{x\rightarrow1^+}\frac{-2x+1}{x-1}=\frac{-1}{0}=-\infty\)
12.
\(y=cotx\Rightarrow y'=-\frac{1}{sin^2x}\)
13.
\(y'=2020\left(x^3-2x^2\right)^{2019}.\left(x^3-2x^2\right)'=2020\left(x^3-2x^2\right)^{2019}\left(3x^2-4x\right)\)
14.
\(y'=\frac{\left(4x^2+3x+1\right)'}{2\sqrt{4x^2+3x+1}}=\frac{8x+3}{2\sqrt{4x^2+3x+1}}\)
15.
\(y'=4\left(x-5\right)^3\)
3.
\(x-2y+1=0\Leftrightarrow y=\frac{1}{2}x+\frac{1}{2}\)
\(y'=\frac{2}{\left(x+1\right)^2}\Rightarrow\frac{2}{\left(x+1\right)^2}=\frac{1}{2}\)
\(\Rightarrow\left(x+1\right)^2=4\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=1\\x=-3\Rightarrow y=3\end{matrix}\right.\)
Có 2 tiếp tuyến: \(\left[{}\begin{matrix}y=\frac{1}{2}\left(x-1\right)+1\\y=\frac{1}{2}\left(x+3\right)+3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}y=\frac{1}{2}x+\frac{1}{2}\left(l\right)\\y=\frac{1}{2}x+\frac{9}{2}\end{matrix}\right.\)
4.
\(\lim\limits\frac{\sqrt{2n^2+1}-3n}{n+2}=\lim\limits\frac{\sqrt{2+\frac{1}{n^2}}-3}{1+\frac{2}{n}}=\sqrt{2}-3\)
\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\)
5.
\(\lim\limits_{x\rightarrow a}\frac{2\left(x^2-a^2\right)+a\left(a+1\right)-\left(a+1\right)x}{\left(x-a\right)\left(x+a\right)}=\lim\limits_{x\rightarrow a}\frac{\left(x-a\right)\left(2x+2a\right)-\left(a+1\right)\left(x-a\right)}{\left(x-a\right)\left(x+a\right)}\)
\(=\lim\limits_{x\rightarrow a}\frac{\left(x-a\right)\left(2x+a-1\right)}{\left(x-a\right)\left(x+a\right)}=\lim\limits_{x\rightarrow a}\frac{2x+a-1}{x+a}=\frac{3a-1}{2a}\)
1.
\(f'\left(x\right)=-3x^2+6mx-12=3\left(-x^2+2mx-4\right)=3g\left(x\right)\)
Để \(f'\left(x\right)\le0\) \(\forall x\in R\) \(\Leftrightarrow g\left(x\right)\le0;\forall x\in R\)
\(\Leftrightarrow\Delta'=m^2-4\le0\Rightarrow-2\le m\le2\)
\(\Rightarrow m=\left\{-1;0;1;2\right\}\)
2.
\(f'\left(x\right)=\frac{m^2-20}{\left(2x+m\right)^2}\)
Để \(f'\left(x\right)< 0;\forall x\in\left(0;2\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-20< 0\\\left[{}\begin{matrix}m>0\\m< -4\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-\sqrt{20}< m< \sqrt{20}\\\left[{}\begin{matrix}m>0\\m< -4\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow m=\left\{1;2;3;4\right\}\)
25.
H là hình chiếu của S lên (ABC)
Do \(SA=SB=SC\Rightarrow HA=HB=HC\)
\(\Rightarrow\) H là tâm đường tròn ngoại tiếp tam giác ABC
26.
\(\left\{{}\begin{matrix}AB\perp BC\\AB\perp CD\end{matrix}\right.\) \(\Rightarrow AB\perp\left(BCD\right)\) \(\Rightarrow AB\perp BD\)
\(\Rightarrow\Delta ABD\) vuông tại B
Pitago tam giác vuông BCD (vuông tại C):
\(BC^2+CD^2=BD^2\Rightarrow BD^2=b^2+c^2\)
Pitago tam giác vuông ABD:
\(AD^2=AB^2+BC^2=a^2+b^2+c^2\)
\(\Rightarrow AD=\sqrt{a^2+b^2+c^2}\)
23.
Gọi H là chân đường cao hạ từ S xuống BC
\(\Rightarrow BH=SB.cos30^0=3a\) ; \(SH=SB.sin30^0=a\sqrt{3}\) ; \(CH=4a-3a=a\)
\(\Rightarrow BC=4HC\Rightarrow d\left(B;\left(SAC\right)\right)=4d\left(H;\left(SAC\right)\right)\)
Từ H kẻ \(HE\perp AC\) ; từ H kẻ \(HF\perp SE\Rightarrow HF\perp\left(SAC\right)\)
\(\Rightarrow HF=d\left(H;\left(SAC\right)\right)\)
\(HE=CH.sinC=\frac{CH.AB}{AC}=\frac{a.3a}{5a}=\frac{3a}{5}\)
\(\frac{1}{HF^2}=\frac{1}{HE^2}+\frac{1}{SH^2}\Rightarrow HF=\frac{HE.SH}{\sqrt{HE^2+SH^2}}=\frac{3a\sqrt{7}}{14}\)
\(\Rightarrow d\left(B;\left(SAC\right)\right)=4HF=\frac{6a\sqrt{7}}{7}\)
24.
\(SA=SC\Rightarrow SO\perp AC\)
\(SB=SD\Rightarrow SO\perp BD\)
\(\Rightarrow SO\perp\left(ABCD\right)\)
Bài 1:
a. \(\lim\limits_{x\rightarrow-1}\frac{x^5+1}{x^3+1}=\lim\limits_{x\rightarrow-1}\frac{5x^4}{3x^2}=\frac{5}{3}\)
b. \(\lim\limits_{x\rightarrow1}\frac{4x^6-5x^5+x}{\left(x-1\right)^2}=\lim\limits_{x\rightarrow1}\frac{24x^5-25x^4+1}{2\left(x-1\right)}=\lim\limits_{x\rightarrow1}\frac{120x^4-100x^3}{2}=\frac{120-100}{2}=10\)
c. \(\lim\limits_{x\rightarrow0}\frac{\left(1+2x\right)\left(1+3x\right)x}{x}+\lim\limits_{x\rightarrow0}\frac{\left(1+3x\right)2x}{x}+\lim\limits_{x\rightarrow0}\frac{3x+1-1}{x}=1+2+3=6\)
d. \(\lim\limits_{x\rightarrow0}\frac{\left(1+x\right)^5-\left(1+5x\right)}{x^5+x^2}=\lim\limits_{x\rightarrow0}\frac{5\left(1+x\right)^4-5}{5x^4+2x}\)
\(=\lim\limits_{x\rightarrow0}\frac{20\left(1+x\right)^3}{20x^3+2}=\frac{20}{2}=10\)
Bài 2:
\(\lim\limits_{x\rightarrow1}\frac{x^m-1}{x^n-1}=\lim\limits_{x\rightarrow1}\frac{mx^{m-1}}{nx^{n-1}}=\frac{m}{n}\)
\(\lim\limits_{x\rightarrow a}\frac{x-a}{x^n-a^n}=\lim\limits_{x\rightarrow a}\frac{1}{nx^{n-1}}=\frac{1}{n.a^{n-1}}\)
Bài 1:
\(a=\lim\limits_{x\rightarrow-1}\frac{\left(x+1\right)\left(x^4-x^3+x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\lim\limits_{x\rightarrow-1}\frac{x^4-x^3+x^2-x+1}{x^2-x+1}=\frac{5}{3}\)
\(b=\frac{1-5+1}{0}=\frac{-3}{0}=-\infty\)
\(c=\lim\limits_{x\rightarrow1}\frac{x\left(1+2x\right)\left(1+3x\right)+2x\left(1+3x\right)+3x}{x}=\lim\limits_{x\rightarrow1}\left[\left(1+2x\right)\left(1+3x\right)+2\left(1+3x\right)+3\right]=1+2+3=6\)
\(d=\lim\limits_{x\rightarrow0}\frac{5\left(1+x\right)^4-1}{5x^4+2x}=\frac{4}{0}=+\infty\)
Bài 2:
\(a=\lim\limits_{x\rightarrow1}\frac{x^m-1}{x^n-1}=\lim\limits_{x\rightarrow1}\frac{mx^{m-1}}{nx^{n-1}}=\frac{m}{n}\)
\(b=\lim\limits_{x\rightarrow a}\frac{x-a}{x^n-a^n}=\lim\limits_{x\rightarrow a}\frac{1}{nx^{n-1}}=\frac{1}{n.a^{n-1}}\)
\(c=\lim\limits_{x\rightarrow0}\frac{x+x^2+...+x^n-n}{x-1}=\frac{-n}{-1}=n\)
\(\left(1+x\right)\left(1+2x\right)...\left(1+nx\right)=x\left(1+2x\right)...\left(1+nx\right)+\left(1+2x\right)\left(1+3x\right)...\left(1+nx\right)\)
\(=x\left(1+2x\right)...\left(1+nx\right)+2x\left(1+3x\right)...\left(1+nx\right)+\left(1+3x\right)...\left(1+nx\right)\)
\(=...\)
\(=x\left(1+2x\right)...\left(1+nx\right)+2x\left(1+3x\right)...\left(1+nx\right)+...+nx+1\)
\(\Rightarrow\lim\limits_{x\rightarrow0}\frac{\left(1+2x\right)\left(1+3x\right)...\left(1+nx\right)-1}{x}\)
\(=\lim\limits_{x\rightarrow0}\frac{x\left(1+2x\right)...\left(1+nx\right)+2x\left(1+3x\right)...\left(1+nx\right)+...+nx}{x}\)
\(=\lim\limits_{x\rightarrow0}\left[\left(1+2x\right)...\left(1+nx\right)+2\left(1+3x\right)...\left(1+nx\right)+...+n\right]\)
\(=1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)
\(cos\left(\frac{x}{2}+15^0\right)=sinx=cos\left(90^0-x\right)\)
\(\Rightarrow\left[{}\begin{matrix}\frac{x}{2}+15^0=90^0-x+k360^0\\\frac{x}{2}+15^0=x-90^0+k360^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=50^0+k240^0\\x=210^0+k720^0\end{matrix}\right.\)
Với \(k=1\Rightarrow x=290^0\)
Bài 2:
\(\Leftrightarrow2sinx+2sinx.cosx-cosx-cos^2x-sin^2x=0\)
\(\Leftrightarrow2sinx+2sinx.cosx-cosx-1=0\)
\(\Leftrightarrow2sinx\left(cosx+1\right)-\left(cosx+1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(cosx+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\cosx=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\) đáp án B
3/ \(y=\frac{sinx+cosx-1}{sinx-cosx+3}\)
\(\Leftrightarrow y.sinx-y.cosx+3y=sinx+cosx-1\)
\(\Leftrightarrow\left(y-1\right)sinx-\left(y+1\right)cosx=-3y-1\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(\left(y-1\right)^2+\left(y+1\right)^2\ge\left(-3y-1\right)^2\)
\(\Leftrightarrow7y^2+6y-1\le0\)
\(\Rightarrow-1\le y\le\frac{1}{7}\Rightarrow y_{max}=\frac{1}{7}\)
\(\lim\limits_{x\rightarrow3}f\left(x\right)=\lim\limits_{x\rightarrow3}\frac{8x^{2016}-24x^{2015}}{x^{2017}+2x^{2016}-15x^{2015}}=\lim\limits_{x\rightarrow3}\frac{8\left(x-3\right)}{x^2+2x-15}=\lim\limits_{x\rightarrow3}\frac{8\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}=\lim\limits_{x\rightarrow3}\frac{8}{x+5}=1\)
\(\lim\limits_{x\rightarrow1}g\left(x\right)=\lim\limits_{x\rightarrow1}\frac{\sqrt{2x+2}-2+2-\sqrt{3x+1}}{m\left(x-1\right)\left(x+1\right)}\)
\(=\lim\limits_{x\rightarrow1}\frac{\frac{2\left(x-1\right)}{\sqrt{2x+2}+2}-\frac{3\left(x-1\right)}{2+\sqrt{3x+1}}}{m\left(x-1\right)\left(x+1\right)}=\lim\limits_{x\rightarrow1}\frac{\frac{2}{\sqrt{2x+2}+2}-\frac{3}{2+\sqrt{3x+1}}}{m\left(x+1\right)}=\frac{\frac{2}{4}-\frac{3}{4}}{2m}=-\frac{1}{8m}\)
\(\Rightarrow-\frac{1}{8m}=1\Rightarrow m=-\frac{1}{8}\)
Chọn B
lim x → + ∞ x x 2 + 16 − x = lim x → + ∞ x x 2 + 16 − x 2 x 2 + 16 + x = lim x → + ∞ 16 x x 2 + 16 + x = 16 2 = 8