Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện : a> 0 ; a khác 1
\(A=\frac{\left(\sqrt{a}\right)^3-1}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}\right)^3+1}{\sqrt{a}\left(\sqrt{a}+1\right)}+\left(\frac{a-1}{\sqrt{a}}\right)\left(\frac{\left(\sqrt{a}+1\right)^2+\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(A=\frac{a+\sqrt{a}+1}{\sqrt{a}}-\frac{a-\sqrt{a}+1}{\sqrt{a}}+\left(\frac{a-1}{\sqrt{a}}\right)\left(\frac{2a+2}{a-1}\right)\)
\(A=\frac{2\sqrt{a}}{\sqrt{a}}+\frac{2\left(a+1\right)}{\sqrt{a}}=2+\frac{2\sqrt{a}\left(a+1\right)}{a}\)
1)đặt nhân tử chung quy đồng là xong
2)phân tích x+2cănx-3=(1-cănx)(3+cănx)
3)2a+căn a đặt căn a ra r rút gọn
a: \(A=\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}+\dfrac{a-1}{\sqrt{a}}\cdot\dfrac{a+2\sqrt{a}+1+a-2\sqrt{a}+1}{a-1}\)
\(=2+\dfrac{2a+2}{\sqrt{a}}=\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}\)
b: Để A=7 thì \(2a-5\sqrt{a}+2=0\)
\(\Leftrightarrow\left(\sqrt{a}-2\right)\left(2\sqrt{a}-1\right)=0\)
=>a=4 hoặc a=1/4
\(A=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+1}+\frac{2}{a-1}\right)\left(a>0;a\ne1\right)\)
\(A=\frac{\sqrt{a}.\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\left(\sqrt{a}-1\right)+2}{a-1}\)
\(A=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\sqrt{a}+1}{a-1}\)
\(A=\frac{\sqrt{a}+1}{\sqrt{a}}:\frac{1}{\sqrt{a}-1}\)
\(A=\frac{\sqrt{a}+1}{\sqrt{a}}.\left(\sqrt{a}-1\right)=\frac{a-1}{\sqrt{a}}\)
Vậy..............
\(B=\left(\frac{\sqrt{a}}{\sqrt{a}+1}-\frac{\sqrt{a}}{\sqrt{a}-1}+\frac{1}{a-1}\right):\frac{a}{2+2\sqrt{a}}\)( điều kiện như trên )
\(B=\frac{\sqrt{a}\left(\sqrt{a}-1\right)-\sqrt{a}\left(\sqrt{a}+1\right)+1}{a-1}:\frac{a}{2\left(1+\sqrt{a}\right)}\)
\(B=\frac{a-\sqrt{a}-a-\sqrt{a}+1}{a-1}:\frac{a}{\left(\sqrt{a}+1\right).2}\)
\(B=\frac{1-2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}.\frac{\left(\sqrt{a}+1\right).2}{a}\)
\(B=\frac{2\left(1-2\sqrt{a}\right)}{a\left(\sqrt{a}-1\right)}\)
Vậy.........
_Minh ngụy_
Với \(a>0;a\ne1\)
\(P=\left(\frac{1-a\sqrt{a}}{a-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1+a\sqrt{a}}{a+\sqrt{a}}-\sqrt{a}\right)\)
\(=\left(\frac{-\left(\sqrt{a}-1\right)\left(1+\sqrt{a}+a\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}+\sqrt{a}\right)\left(\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}-\sqrt{a}\right)\)
\(=\left(\frac{-a-\sqrt{a}-1+a}{\sqrt{a}}\right)\left(\frac{a-\sqrt{a}+1-a}{\sqrt{a}}\right)=\left(\frac{-\sqrt{a}-1}{\sqrt{a}}\right)\left(\frac{1-\sqrt{a}}{\sqrt{a}}\right)\)
\(=-\frac{1-a}{a}=\frac{a-1}{a}\)