Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Đk: x khác -3
x khác 1
Biểu thức \(\Leftrightarrow\dfrac{x^2-x}{x^2+2x-3}+\dfrac{2x+6}{x^2+2x-3}=\dfrac{12}{x^2+2x-3}\)
\(\Leftrightarrow x^2-x+2x+6=12\Leftrightarrow x^2+x-6=0\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
kl: x thuộc {-3;2}
ĐKXĐ: x>=0; y>=1 ; z>=2.
câu 1:Từ giả thiết ta có:
\(2\sqrt{x}+2\sqrt{y-1}+2\sqrt{z-2}=x+y+z\)
\(\Leftrightarrow x-2\sqrt{x}+1+\left(y-1\right)-2\sqrt{y-1}+1+\left(z-2\right)-2\sqrt{z-2}+1=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
\(\Leftrightarrow\sqrt{x}=1;\sqrt{y-1}=1;\sqrt{z-2}=1\)
Vậy x=1;y=2;z=3.
Có gì ko hiểu bạn cứ bình luận phía dưới :)
a)\(pt\Leftrightarrow\sqrt{3x^2-6x+4}+\sqrt{2x^2-4x+6}+x^2-2x-2=0\)
\(\Leftrightarrow\sqrt{3x^2-6x+4}-1+\sqrt{2x^2-4x+6}-2+x^2-2x+1=0\)
\(\Leftrightarrow\dfrac{3x^2-6x+4-1}{\sqrt{3x^2-6x+4}+1}+\dfrac{2x^2-4x+6-4}{\sqrt{2x^2-4x+6}+2}+\left(x-1\right)^2=0\)
\(\Leftrightarrow\dfrac{3\left(x-1\right)^2}{\sqrt{3x^2-6x+4}+1}+\dfrac{2\left(x-1\right)^2}{\sqrt{2x^2-4x+6}+2}+\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(\dfrac{3}{\sqrt{3x^2-6x+4}+1}+\dfrac{2}{\sqrt{2x^2-4x+6}-2}+1\right)=0\)
Dễ thấy: \(\dfrac{3}{\sqrt{3x^2-6x+4}+1}+\dfrac{2}{\sqrt{2x^2-4x+6}-2}+1>0\)
\(\Rightarrow\left(x-1\right)^2=0\Rightarrow x-1=0\Rightarrow x=1\)
b)\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}=3-4x-2x^2\)
\(pt\Leftrightarrow\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}+2x^2+4x-3=0\)
\(\Leftrightarrow\sqrt{3x^2+6x+12}-3+\sqrt{5x^4-10x^2+9}-2+2x^2+4x-8=0\)
\(\Leftrightarrow\sqrt{3x^2+6x+12}-3+\sqrt{5x^4-10x^2+9}-2+2x^2+4x+2=0\)
\(\Leftrightarrow\dfrac{3x^2+6x+12-9}{\sqrt{3x^2+6x+12}+3}+\dfrac{5x^4-10x^2+9-4}{\sqrt{5x^4-10x^2+9}+2}+2\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\dfrac{3\left(x+1\right)^2}{\sqrt{3x^2+6x+12}+3}+\dfrac{5\left(x+1\right)^2\left(x-1\right)^2}{\sqrt{5x^4-10x^2+9}+2}+2\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(\dfrac{3}{\sqrt{3x^2+6x+12}+3}+\dfrac{5\left(x-1\right)^2}{\sqrt{5x^4-10x^2+9}+2}+2\right)=0\)
Dễ thấy: \(\dfrac{3}{\sqrt{3x^2+6x+12}+3}+\dfrac{5\left(x-1\right)^2}{\sqrt{5x^4-10x^2+9}+2}+2>0\)
\(\Rightarrow\left(x+1\right)^2=0\Rightarrow x+1=0\Rightarrow x=-1\)
5.
\(\Leftrightarrow x^2+7-\left(x+4\right)\sqrt{x^2+7}+4x=0\)
Đặt \(\sqrt{x^2+7}=t>0\)
\(\Rightarrow t^2-\left(x+4\right)t+4x=0\)
\(\Delta=\left(x+4\right)^2-16x=\left(x-4\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\frac{x+4+x-4}{2}=x\\t=\frac{x+4-x+4}{2}=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+7}=x\left(x\ge0\right)\\\sqrt{x^2+7}=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+7=x^2\left(vn\right)\\x^2+7=16\end{matrix}\right.\)
Câu 6 bạn coi lại đề
4.
ĐKXĐ: ...
Đặt \(\sqrt{x+3}=a\ge0\)
\(\Rightarrow x+a=\sqrt{5x^2-a^2}\)
\(\Rightarrow x^2+2ax+a^2=5x^2-a^2\)
\(\Rightarrow2x^2-ax-a^2=0\)
\(\Rightarrow\left(x-a\right)\left(2x+a\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=x\\a=-2x\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+3}=x\left(x\ge0\right)\\\sqrt{x+3}=-2x\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=x^2\left(x\ge0\right)\\x+3=4x^2\left(x\le0\right)\end{matrix}\right.\)
Trung bình cộng của hai so bằng 135. Biết một trong hai số la 246. Tìm số kia
\(2x^2+2x+1=\sqrt{4x+1}\)
\(\left(2x^2+2x+1\right)^2=\left(\sqrt{4x+1}\right)^2\)
\(4x^4+8x^3+8x^2+4x+1=4x+1\)
\(\Leftrightarrow4x^4+8x^3+8x^2=0\)
\(\Leftrightarrow4x^2\left(x^2+2x+2\right)=0\)
\(\Leftrightarrow x=0\)
a) Đặt: \(\sqrt{x^2+1}=t\left(t\ge0\right)\), \(t^2=x^2+1\Rightarrow x^2-1=t^2-2\)
pt tương đương với \(\left(x^2-1\right)^2-12\sqrt{x^2+1}-13=0\)
=> \(\left(t^2-2\right)^2-12t-13=0\), rút gọn và phân tích pt này ta được: \(\left(t+1\right)\left(t-3\right)\left(t^2+2t+3\right)=0\)
Vì \(t^2+2t+3=\left(t+1\right)^2+2>0\left(\forall t\right)\) nên \(\left[{}\begin{matrix}t+1=0\\t-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=3\end{matrix}\right.\)
Với t = -1 thì 1 = x2 +1 <=> x=0
Với t = 3 thì 9 = x2 +1 <=> \(x=\pm2\sqrt{2}\)
Lần lượt thay các giá trị của x vừa tìm được vào pt ban đầu, nhận \(x=\pm2\sqrt{2}\) là nghiệm của pt
Vậy pt đã cho có 2 nghiêm là x =... ; x =...
b) Dùng PP chứng minh nghiệm duy nhất
x=9 là nghiệm của pt
Với x>9 thì VT > \(9+\sqrt{9-5}+\sqrt{9}+\sqrt{9^2-5.9}=20\)
Với x<9 thì VT < \(9+\sqrt{9-5}+\sqrt{9}+\sqrt{9^2-5.9}=20\)
Vậy...........
c) Vì \(\left|x-2y+1\right|\ge0\) và \(\left|3x+y-7\right|\ge0\) nên
\(\left\{{}\begin{matrix}x-2y+1=0\\3x+y-7=0\end{matrix}\right.\),hệ này cho x = \(\dfrac{13}{7}\), y = \(\dfrac{10}{7}\)
Vậy.....
Có vài chỗ mk làm gọn, mong bạn hiểu cho