Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ 4x + 20 = 0
⇔4x = -20
⇔x = -5
Vậy phương trình có tập nghiệm S = {-5}
b/ 2x – 3 = 3(x – 1) + x + 2
⇔ 2x-3 = 3x -3+x+2
⇔2x – 3x = -3+2+3
⇔-2x = 2
⇔x = -1
Vậy phương trình có tập nghiệm S = {-1}
câu tiếp theo
a/ (3x – 2)(4x + 5) = 0
3x – 2 = 0 hoặc 4x + 5 = 0
- 3x – 2 = 0 => x = 3/2
- 4x + 5 = 0 => x = – 5/4
Vậy phương trình có tập nghiệm S= {-5/4,3/2}
b/ 2x(x – 3) – 5(x – 3) = 0
=> (x – 3)(2x -5) = 0
=> x – 3 = 0 hoặc 2x – 5 = 0
* x – 3 = 0 => x = 3
* 2x – 5 = 0 => x = 5/2
Vậy phương trình có tập nghiệm S = {0, 5/2}
Mình khuyên bạn thế này :
Bạn nên tách những câu hỏi ra
Như vậy các bạn sẽ dễ giúp
Và cũng có nhiều bạn giúp hơn !
Bài 1.
a) ( x - 3 )( x + 7 ) = 0
<=> x - 3 = 0 hoặc x + 7 = 0
<=> x = 3 hoặc x = -7
Vậy S = { 3 ; -7 }
b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0
<=> ( x - 2 )( x - 2 + x - 3 ) = 0
<=> ( x - 2 )( 2x - 5 ) = 0
<=> x - 2 = 0 hoặc 2x - 5 = 0
<=> x = 2 hoặc x = 5/2
Vậy S = { 2 ; 5/2 }
c) x2 - 5x + 6 = 0
<=> x2 - 2x - 3x + 6 = 0
<=> x( x - 2 ) - 3( x - 2 ) = 0
<=> ( x - 2 )( x - 3 ) = 0
<=> x - 2 = 0 hoặc x - 3 = 0
<=> x = 2 hoặc x = 3
a) 2x - 6 = 0
2x = 6
x = 3
Vậy tâp nghiệm S = { 3 }
b) ( x + 2 ) ( 2x + 1 ) =0
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\2x+1=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{2}\end{cases}}\)
Vậy tập nghiệm S = { -2 ; -1/2 }
c) ( x + 2 ) ( 2x + 1 ) - ( 2x - 3 ) ( 2x + 1) = 0
( x + 2 - 2x + 3 ) ( 2x + 1 ) = 0
( -x + 5 ) ( 2x + 1 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}-x+5=0\\2x+1=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=5\\x=-\frac{1}{2}\end{cases}}\)
Vậy tập nghiệm S = { 5 ; -1/2 }
d) \(\frac{x+3}{x-5}-\frac{4}{x}=\frac{20}{x\left(x-5\right)}\)
\(\Leftrightarrow\frac{x\left(x+3\right)}{x\left(x-5\right)}-\frac{4\left(x-5\right)}{x\left(x-5\right)}=\frac{20}{x\left(x-5\right)}\)với \(x\ne0;x\ne5\)
\(\Rightarrow x^2+3x-4x+20=20\)
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(KTMĐK\right)\\x=1\left(TMĐK\right)\end{cases}}\)
Vậy tập nghiệm S ={ 1 }
a) 2x - 6 = 0
<=> 2x = 6
<=> x = \(\frac{6}{2}\)= 3
b) (x+2).(2x+1) = 0
<=> x+2 = 0 => x = -2
2x+1 = 0 => x = \(\frac{-1}{2}\)
c)(x+2)(2x+1)-(2x-3)(2x+1)=0
<=>(2x+1)(5-x)=0
<=> 2x+1 = 0 => x = \(\frac{-1}{2}\)
5-x = 0 => x = 5
d) Đkxđ: x \(\ne\)5 ; 0
Qui đồng và khử mẫu ta được:
x\(^2\)+ 3x - 4x + 20 = 20
<=> x\(^2\)+ x = 0
<=> x (x+1) = 0
<=> x = 0 (loại)
x+1 = 0 => x= -1 (thỏa)
a, \(\left(2x+1\right)\left(x^2+2\right)=0\)
TH1 : \(x=-\frac{1}{2}\); TH2 : \(x^2=-2\)vô lí vì \(x^2\ge0\forall x;-2< 0\)
b, \(\left(x^2+4\right)\left(7x-3\right)=0\)
TH1 : \(x^2=-4\)vô lí vì \(x^2\ge0\forall x;-4< 0\)
TH2 : \(x=\frac{3}{7}\)
c, \(\left(x^2+x+1\right)\left(6-2x\right)=0\)
TH1 : \(x^2+x+1\ne0\)vì \(x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
TH2 : \(2x=6\Leftrightarrow x=3\)
d, \(\left(8x-4\right)\left(x^2+2x+2\right)=0\)
TH1 : \(x=\frac{1}{2}\)
TH2 : \(x^2+2x+2\ne0\)vì \(x^2+2x+1+1=\left(x+1\right)^2+1>0\)
\(x-5=\frac{1}{3\left(x+2\right)}\left(đkxđ:x\ne-2\right)\)
\(< =>3\left(x-5\right)\left(x+2\right)=1\)
\(< =>3\left(x^2-3x-10\right)=1\)
\(< =>x^2-3x-10=\frac{1}{3}\)
\(< =>x^2-3x-\frac{31}{3}=0\)
giải pt bậc 2 dễ r
\(\frac{x}{3}+\frac{x}{4}=\frac{x}{5}-\frac{x}{6}\)
\(< =>\frac{4x+3x}{12}=\frac{6x-5x}{30}\)
\(< =>\frac{7x}{12}=\frac{x}{30}< =>12x=210x\)
\(< =>x\left(210-12\right)=0< =>x=0\)
1
a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9
(9+x)= -9-x khi 9+x <0 hoặc x <-9
1)pt 9+x=2 với x >_ -9
<=> x = 2-9
<=> x=-7 thỏa mãn điều kiện (TMDK)
2) pt -9-x=2 với x<-9
<=> -x=2+9
<=> -x=11
x= -11 TMDK
vậy pt có tập nghiệm S={-7;-9}
các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd
nhu cau o trên mk lam 9+x>_0 hoặc x>_0
với số âm thi -2x>_0 hoặc x <_ 0 nha
a) \(\left(2x-1\right)\left(3-2x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-1=0\\3-2x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=1\\2x=3\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{3}{2}\end{cases}}}\)
a) ( 2x - 1 ) ( 3 - 2x) = 0
=> \(\orbr{\begin{cases}2x-1=0\\3-2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=1\\-2x=3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{-3}{2}\end{cases}}}\)
vậy x = \(\frac{1}{2}\) hoặc x = \(\frac{-3}{2}\)
Bài 1:
a) (5x-4)(4x+6)=0
\(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\4x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=4\\4x=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{2}\end{cases}}}\)
b) (x-5)(3-2x)(3x+4)=0
<=> x-5=0 hoặc 3-2x=0 hoặc 3x+4=0
<=> x=5 hoặc x=\(\frac{3}{2}\)hoặc x=\(\frac{-4}{3}\)
c) (2x+1)(x2+2)=0
=> 2x+1=0 (vì x2+2>0)
=> x=\(\frac{-1}{2}\)
bài 1:
a) (5x - 4)(4x + 6) = 0
<=> 5x - 4 = 0 hoặc 4x + 6 = 0
<=> 5x = 0 + 4 hoặc 4x = 0 - 6
<=> 5x = 4 hoặc 4x = -6
<=> x = 4/5 hoặc x = -6/4 = -3/2
b) (x - 5)(3 - 2x)(3x + 4) = 0
<=> x - 5 = 0 hoặc 3 - 2x = 0 hoặc 3x + 4 = 0
<=> x = 0 + 5 hoặc -2x = 0 - 3 hoặc 3x = 0 - 4
<=> x = 5 hoặc -2x = -3 hoặc 3x = -4
<=> x = 5 hoặc x = 3/2 hoặc x = 4/3
c) (2x + 1)(x^2 + 2) = 0
vì x^2 + 2 > 0 nên:
<=> 2x + 1 = 0
<=> 2x = 0 - 1
<=> 2x = -1
<=> x = -1/2
bài 2:
a) (2x + 7)^2 = 9(x + 2)^2
<=> 4x^2 + 28x + 49 = 9x^2 + 36x + 36
<=> 4x^2 + 28x + 49 - 9x^2 - 36x - 36 = 0
<=> -5x^2 - 8x + 13 = 0
<=> (-5x - 13)(x - 1) = 0
<=> 5x + 13 = 0 hoặc x - 1 = 0
<=> 5x = 0 - 13 hoặc x = 0 + 1
<=> 5x = -13 hoặc x = 1
<=> x = -13/5 hoặc x = 1
b) (x^2 - 1)(x + 2)(x - 3) = (x - 1)(x^2 - 4)(x + 5)
<=> x^4 - x^3 - 7x^2 + x + 6 = x^4 + 4x^3 - 9x^2 - 16x + 20
<=> x^4 - x^3 - 7x^2 + x + 6 - x^4 - 4x^3 + 9x^2 + 16x - 20 = 0
<=> -5x^3 - 2x^2 + 17x - 14 = 0
<=> (-x + 1)(x + 2)(5x - 7) = 0
<=> x - 1 = 0 hoặc x + 2 = 0 hoặc 5x - 7 = 0
<=> x = 0 + 1 hoặc x = 0 - 2 hoặc 5x = 0 + 7
<=> x = 1 hoặc x = -2 hoặc 5x = 7
<=> x = 1 hoặc x = -2 hoặc x = 7/5
a) 4x + 20 = 0
⇔ 4x = -20
⇔ x = -5
Vậy phương trình có tập nghiệm S ={-5}
b) 2x – 3 = 3(x – 1) + x + 2
⇔ 2x – 3 = 3x – 3 + x + 2
⇔ 2x – 3x – x = -3 + 2 + 3
⇔ -2x = 2
⇔ X = -1
Vậy phương trình có tập nghiệm S ={-1}
c) (3x – 2)(4x + 5) = 0
3x – 2 = 0 hoặc 4x + 5 = 0 ·
3x – 2 = 0 => x = 3/2 ·
4x + 5 = 0 => x = – 5/4
Vậy phương trình có tập nghiệm S ={3/2; -5/4}
Giải phương trình :
c) x^2 - x - 20 = 0
=> x\(^2\)- 5x + 4x - 20 = 0
=> ( x\(^2\)+ 4x ) - ( 5x + 20 ) = 0
=> x ( x + 4 ) - 5 ( x + 4 ) =0
=> ( x + 4 ) ( x - 5 ) = 0
<=> \(\orbr{\begin{cases}x+4=0\\x-5=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=-4\\x=5\end{cases}}\)
Vậy tập no của phương trình là S = -4 ; 5
\(x^2-x-20=0\)
\(\Leftrightarrow\left(x^2-x+\frac{1}{4}\right)-\frac{81}{4}=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2-\frac{81}{4}=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=\frac{81}{4}\)
\(\orbr{\begin{cases}x-\frac{1}{2}=\frac{-9}{2}\\x-\frac{1}{2}=\frac{9}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-4\\x=5\end{cases}}\)
Vậy phương trình có tập nghiệm \(S=\left\{-4;5\right\}\)