K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2015

1) Goi x,y,z lan luot la cac goc cua tam giac tren. ta lap duoc:

                                 x/3=y/5=z/7

Gia xu 60 do la so do cua goc thu nhat thi ta suy ra: x/3=y/5=z/7=60/3=20

                                                                   => x=60 ; y=100 ; z=140 

Do 60+100+140 khong bang 180 nen tam giac nay khong ton tai.

Gia xu 60 do la so do cua goc thu 2 thi suy ra: x/3=y/5=z/7=60/5=12

                                                                   => x=36 ; y=60 ; z=84

Do 36+60+84 bang 180 nen tam giac nay ton tai

Gia xu 60 la so do cua goc thu 3 thi suy ra:  x/3=y/5=z/7=60/7

                                                            => x=180/7 ; y=300/7 ; z=60

Do 180/7+300/7+60 khong bang 180  nen tam giac nay khong ton tai

Vay tam giac tren chi co the ton tai khi goc thu 2 hay goc ti le voi 5  cua no co so do la 60 do.

2) goi cac canh cua tam giac nay lan luot la a,b,c. Theo de bai ta co:

                 a=3k ; b=4k ; c=8k

Vi a+b ( hay 3k+4k=7k) < c ( hay 8k ) nen tam giac nay khong ton tai 

27 tháng 11 2016

Gọi 3 cạnh tam giác đó lần lượt là \(a,b,c\). Ta có :

\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b}{8}=\frac{b+c}{12}=\frac{c+a}{10}\Leftrightarrow\frac{a}{3}=\frac{b+c}{12};\frac{b}{5}=\frac{a+c}{10};\frac{c}{7}=\frac{a+b}{8}\)(viết lại cho dễ thấy)

\(\Rightarrow\hept{\begin{cases}4a=b+c\Leftrightarrow a< b+c\\2b=a+c\Leftrightarrow b< a+c\\\frac{8}{7}c=a+b\Leftrightarrow c< a+b\end{cases}}\)

Ta thấy các cạnh của tam giác đều thỏa mãn bất đẳng thức :

Trong một tam giác, tổng độ dài hai cạnh bao giờ cũng lớn hơn cạnh còn lại

do đó có tồn tại một tam giác sao cho 3 cạnh của nó tỉ lệ thụân với 3;5;7

.

27 tháng 11 2016

Vậy lấy cạnh thứ ba với tỉ lệ là 7 thử :

 7 < 3 + 5 

Vậy có tồn lại .

Tiếp tục thử với các cạnh khác :

3 < 7 + 5

5 < 3 + 7

Vậy có tồn tại tam giác đó

3 tháng 4 2017

Gọi độ dài 3 cạnh của tam giác thứ tự là a,b,c (a > 0; b > 0; c > 0).

Vì độ dài 3 cạnh tỉ lệ với 3, 4, 9 nên:

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Suy ra: a + b = 3k + 4k = 7k < 9k (hay a + b < c)

Điều này mâu thuẫn (một cạnh tam giác bao giờ cũng nhỏ hơn tổng hai cạnh còn lại)

Vậy không có tam giác nào có 3 cạnh tỉ lệ 3;4;9.

12 tháng 10 2017

Gọi độ dài 3 cạnh của tam giác thứ tự là a, b, c.

Theo đề bài ta có: a3=b4=c9a3=b4=c9

Đặt các tỉ số trên là k. Ta có:

a3=k⇒a=3ka3=k⇒a=3k

b4=k⇒b=4kb4=k⇒b=4k

c9=k⇒c=9kc9=k⇒c=9k

Suy ra: a + b = 3k + 4k = 7k < 9k

Điều này mâu thuẫn (một cạnh tam giác bao giờ cũng nhỏ hơn tổng hai cạnh còn lại).

Vậy không có tam giác nào có 3 cạnh tỉ lệ với 3; 4; 9.



NM
21 tháng 10 2021

ta có:

undefined

4 tháng 11 2015

a) \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{45}{15}=3\)

a=9, b=15, c=21

b) \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{c-a}{7-3}=\frac{20}{4}=5\)

a= 15; b=25; c= 35

28 tháng 5 2018

Gọi x,y,z là ba cạnh của tam giác (x,y,z > 0)

Gỉa sử x,y,z tỉ lệ thuận với 3 ;5;7 ta có: x 3 = y 5 = z 7

Thì x là cạnh nhỏ nhất và z là cạnh lớn nhất của tam giác . Khi đó theo bài ta có x + z - y = 20

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

x 3 = y 5 = z 7 = x + y − z 3 − 5 + 7 = 20 5 = 4

Do đó x = 4.3 = 12

Vậy cạnh nhỏ nhất của tam giác là 12m

Đáp án cần chọn là B