Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\) \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)
\(\left(a-b\right)^2+2ab-2ab=\left(a+b\right)^2-4ab\)
\(\left(a-b\right)^2=a^2+2ab+b^2-4ab\)
\(\left(a-b\right)^2=a^2-2ab+b^2\)
\(\left(a-b\right)^2=\left(a-b\right)^2\)
Vậy \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)
Tương tự mấy câu kia
b: \(\left(a+b+c\right)^2+a^2+b^2+c^2\)
\(=2a^2+2b^2+2c^2+2ab+2bc+2ac\)
\(=\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(a^2+2ac+c^2\right)\)
\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(a+c\right)^2\)
c: \(x^4+y^4-2\left(x^2+xy+y^2\right)^2\)
\(=\left(x^2+y^2\right)^2-2x^2y^2-2\left[\left(x^2+y^2\right)^2+2xy\left(x^2+y^2\right)+x^2y^2\right]\)
\(=-\left(x^2+y^2\right)^2-4x^2y^2-4xy\left(x^2+y^2\right)\)
\(=-\left(x^2+2xy+y^2\right)^2=-\left(x+y\right)^4\)
=>\(x^4+y^4+\left(x+y\right)^4=2\left(x^2+xy+y^2\right)^2\)
a. Biến đổi vế phải, ta có:
(a+b)2- 4ab
= a2+2ab+b2-4ab
=a2+2ab-4ab+b2
= a2-2ab+b2
= (a-b)2
Vậy: ( a - b )2 = ( a + b )2 - 4ab
Mik chỉ làm đc câu a thui àk
c) \(VT=\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left(a+b\right)^3+3c\left(a+b\right)\left(a+b+c\right)+c^3-a^3-b^3-c^3\)
\(=a^3+b^3+c^3+3ab\left(a+b\right)+3c\left(a+b\right)\left(a+b+c\right)-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left[ab+c\left(a+b+c\right)\right]\)
\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)
d) \(VT=a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=VP\)
I don't now
...............
.................
Câu 4 :
Ta có : a+b+c=0
=> a+b=-c
Lại có : a3+b3=(a+b)3-3ab(a+b)
=> a3+b3+c3=(a+b)3-3ab(a+b)+c3
=-c3-3ab. (-c)+c3
=3abc
Vậy a3+b3+c3=3abc với a+b+c=0
a, Ta có : BĐT \(a^2+b^2\ge2ab\) = BĐT cauchuy .
-> Áp dụng BĐT cauchuy ta được :
\(\left\{{}\begin{matrix}a^4+b^4\ge2\sqrt{a^4b^4}=2a^2b^2\\c^4+d^4\ge2\sqrt{c^4d^4}=2c^2d^2\end{matrix}\right.\)
- Cộng 2 bpt lại ta được :
\(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2=2\left(\left(ab\right)^2+\left(cd\right)^2\right)\)
- Mà \(\left(ab\right)^2+\left(cd\right)^2\ge2abcd\)
=> \(a^4+b^4+c^4+d^4\ge2.2abcd=4abcd\)
b, CMTT câu 1 .
- Áp dụng BĐT cauchuy ta được :
\(\left\{{}\begin{matrix}a^2+1\ge2a\\b^2+1\ge2b\\c^2+1\ge2c\end{matrix}\right.\)
- Nhân 3 bpt trên lại ta được :
\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2.2.2abc=8abc\)
a) Biến đổi vế trái ta có:
\(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2=2\left(a^2+b^2\right)=VP\)
Vậy đẳng thức trên được chứng minh
b) Biến đổi vế trái ta có:
\(\left(a+b+c\right)^2+a^2+b^2+c^2\)
\(=a^2+b^2+c^2+2ab+2bc+2ca+a^2+b^2+c^2\)
\(=\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2+2ca+a^2\right)\)
\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2=VP\)
Vậy đẳng thức trên được chứng minh
c)Biến đổi vế trái ta có:
\(\left(x+y\right)^4+x^4+y^4\)
\(=x^4+y^4+4x^3y+6x^2y^2+4xy^3+x^4+y^4\)
\(=2\left(x^4+y^4+2x^2y^2\right)+4xy\left(x^2+y^2\right)+2x^2y^2\)
\(=2\left(x^2+y^2\right)^2+4xy\left(x^2+y^2\right)+2x^2y^2\)
\(=2\left[\left(x^2+y^2\right)^2+2xy\left(x^2+y^2\right)+x^2y^2\right]\)
\(=2\left(x^2+xy+y^2\right)^2=VP\)
Vậy đẳng thức trên được chứng minh
#)Giải :
b) Ta có :
\(\left[\left(a+b\right)+\left(c+d\right)\right]^2=\left(a+b\right)^2+2\left(a+b\right)\left(c+d\right)+\left(c+d\right)^2\)
Áp dụng hằng đẳng thức tương tự với ba đa thức còn lại, ta được :
\(2\left(a+b\right)^2+2\left(a-b\right)^2+2\left(c+d\right)^2+2\left(c-d\right)^2\)
\(=2\left(a^2+2ab+b^2+a^2-2ab+b^2+c^2+2cd+d^2+c^2-2cd+d^2\right)\)
\(=4\left(a^2+b^2+c^2+d^2\right)\)
\(\Rightarrowđpcm\)