K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2015

a, Điều đương nhiên

b,\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{999.1000}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.........+\frac{1}{999}-\frac{1}{1000}\)

\(1-\frac{1}{1000}\)

\(\frac{999}{1000}\)

25 tháng 8 2015

bài này mình làm được nhưng mà dài vậy sao làm nổi 

29 tháng 1 2020

\(B=\frac{\frac{2016}{1000}+\frac{2016}{999}+...+\frac{2016}{501}}{\frac{-1}{1.2}+\frac{-1}{3.4}+...+\frac{-1}{999.1000}}=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{999.1000}\right)}\)

\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}\right)}\)

\(=\frac{2016\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{999}+\frac{1}{1000}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1000}\right)\right]}\)

\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{999}+\frac{1}{1000}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{500}\right)\right]}\)

\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+....+\frac{1}{999}+\frac{1}{1000}\right)}=\frac{2016}{-1}=-2016\)

Vậy B = - 2016

Bạn Xyz cho mik hỏi ở phần mẫu số tại sao lại có -2*(1/2+1/4+...+1/1000) vậy? Nó ở đâu ra thế?

12 tháng 3 2017

1. B = 1+ (2+ 3 +4+.... +98 +99)                  

        = 1+ 98

         = 99

2

2,

C= (999+1)+(998+2)+...+(553+447)

= 1000.250

=250 000

C2:

C=[(999-1):2+1].(999+1):2

=250 000

12 tháng 3 2020

Bài 1

Ta có

3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3

=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]

=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)] 

=n.(n+1).(n+2) 

=>S=[n.(n+1).(n+2)] /3

13 tháng 4 2020

Bài 1. B = 1 + 2 + 3 + ... + 98 + 99

Số số hạng : ( 99 - 1 ) : 1 + 1 = 99 số

Tổng : ( 99 + 1 ) . 99 : 2 = 4950

=> B = 4950

Công thức

Tính số số hạng : ( số lớn - số bé ) : khoảng cách + 1

Tính tổng : ( số lớn + số bé ) . số số hạng : 2

=> Tương tự với C và D

13 tháng 4 2020

Bài 1:

Dãy B có số số hạng là:(99-1):1 +1=99 số số hạng

=> B=\(\frac{\left(99+1\right)\cdot99}{2}=4950\)

Bài 2: 

Dãy C có số số hạng là: (999-1):2+1=500 số số hạng

=> \(C=\frac{\left(999+1\right)\cdot500}{2}=250000\)

Bài 3: làm tương tự

26 tháng 7 2017

K MIK NHA BẠN ^^

Tính B= 1 + 2 + 3 + ... + 98 + 99
Tính C = 1 + 3 + 5 + ... + 997 + 999
Tính D = 10 + 12 + 14 + ... + 994 + 996 + 998

4A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3

=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]

=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)] 

=n.(n+1).(n+2) 

=>S=[n.(n+1).(n+2)] /3

26 tháng 7 2017

Bài 1: C = (999+1). [(999-1):2+1]: 2= 250000

Bài 2: B = (99+1). [(99-1):2+1]: 2= 2500

Bài 3: D = (998+10). [(998-10):2+1]: 2= 249480

Bài 4: 3S= 1.2.3 + 2.3.3 + 3.4.3+...+n.(n+1).3

              = 1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+.....+n.(n+1).[(n+2)-(n-1)]

              = 1.2.3+2.3.4+2.3+3.4.5-2.3.4+.....+n.(n+1).(n+2)-n.(n+1)-(n-1)

              =n.(n+1).(n+2)

              => A = \(\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)

18 tháng 11 2016

B1

Số số hạng của dãy là : (99 - 1) : 1 + 1 = 99 ( số )

Tổng của dãy là : (99 + 1) x 99 : 2 = 4950

B2

Số số hạng của dãy là : (999 - 1) : 2 + 1 = 500 (số)

Tổng của dãy là : (999 + 1) x 500 : 2 = 250000

B3

Số số hạng của dãy là : (998 - 10) : 2 + 1 = 495(số)

Tổng của dãy là : (998 + 10) x 495 : 2 = 249480

B4

B5

Để mình thử đã rồi giải cho

Tk hoặc sửa hộ mình nhé

18 tháng 11 2016

ko can k

lop 3 em cho anh lop 7 (hsg) bai 1

B=(1+99)+(2+98)+...+(49+51)+50

=49*100+50=4950