Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. CMR với mọi số nguyên dương ta có:
A= x5/120 + x4/12 + 7x3/24 + 5x2/12 + x/5 luôn luôn dương
2. Cho a3 + 3ab2 =14 và b3 + 3a2b =13 . Tính: P= a2 _ b2
bui hai nam: s cóp lại y nguyên đề trong phần trả lời z bn =='
Câu a phần I sai. đề là :
a) A = -3x(x - 5 ) + 3(x2 - 4x ) - 3x + 10
Bài 3:
a: \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
=-5n chia hết cho 5
b: \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)
\(=n^2+4n-n-4-\left(n^2+n-4n-4\right)\)
\(=n^2+3n-4-\left(n^2-3n-4\right)\)
\(=6n⋮6\)
Bài 2:
a) \(A=ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)
\(=\left(a-b\right)\left(c-a\right)\left(c-b\right)\)
b) \(B=a\left(b^2-c^2\right)+b^2\left(c^2-a^2\right)+c\left(a^2-b^2\right)\)
\(=\left(b-a\right)\left(c-a\right)\left(c-b\right)\)
c) \(C=\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
p/s: từ sau bn đăng 1-2 bài thôi nhé, nhiều thế này người lm bài cx hơi bất tiện để đọc đề
còn mấy câu nữa bn đăng lại nhé
a) Ta có: \(x^2-x-6\)
\(=x^2-x-9+3\)
\(=\left(x^2-9\right)-\left(x-3\right)\)
\(=\left(x-3\right)\left(x+3\right)-\left(x-3\right)\)
\(=\left(x-3\right)\left(x+2\right)\)
b) Sử dụng phương pháp Hệ số bất định
1. Sửa đề
\(x^4-2x^2y+x^2+y^2-2y+1\)
\(=x^2\left(x^2-2y+1\right)+\left(x^2-2y+1\right)\)
\(=\left(x^2-2y+1\right)\left(x^2+1\right)\)
2.
a. \(A=\dfrac{x^5}{120}+\dfrac{x^4}{12}+\dfrac{7x^3}{24}+\dfrac{5x^2}{12}+\dfrac{x}{5}\)
\(=\dfrac{x^5+10x^4+35x^3+50x^2+24x}{120}\)
Ta có: \(x^5+10x^4+35x^3+50x^2+24x\)
\(=x\left(x^4+10x^3+35x^2+50x+24\right)\)
\(=x\left(x^4+x^3+9x^3+9x^2+26x^2+26x+24x+24\right)\)
\(=x\left[x^3\left(x+1\right)+9x^2\left(x+1\right)+26x\left(x+1\right)+24\left(x+1\right)\right]\)
\(=x\left(x+1\right)\left(x^3+9x^2+26x+24\right)\)
\(=x\left(x+1\right)\left(x^3+2x^2+7x^2+14x+12x+24\right)\)
\(=x\left(x+1\right)\left[x^2\left(x+2\right)+7x\left(x+2\right)+12\left(x+2\right)\right]\)
\(=x\left(x+1\right)\left(x+2\right)\left(x^2+7x+12\right)\)
\(=x\left(x+1\right)\left(x+2\right)\left(x^2+3x+4x+12\right)\)
\(=x\left(x+1\right)\left(x+2\right)\left[x\left(x+3\right)+4\left(x+3\right)\right]\)
\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)⋮\left(1\cdot2\cdot3\cdot4\cdot5\right)=120\)
\(\Rightarrow\dfrac{x^5+10x^4+35x^3+50x^2+24x}{120}\in Z\)
A=\(\frac{x^5}{120}+\frac{x^4}{12}+\frac{7x^3}{24}+\frac{5x^2}{12}+\frac{x}{5}\)
\(=\frac{x^5+10x^4+35x^3+50x^2+24x}{120}\)
\(=\frac{x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}{120}\)
vì\(x;x+1;x+2;x+3;x+4\)là 5 STN liên tiếp nên sẽ có một số chia hết cho5
\(x;x+1;x+2;x+3;x+4\)là 5 STN liên tiếp nên sẽ có 1 số chia hết cho 5
\(x;x+1;x+2;x+3;x+4\)là 5 STN liên tiếp nên có ít nhất 2 số chia hết cho2
\(\Rightarrow x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)⋮120\)
Mà \(x\in N\Rightarrow\)\(\frac{x^5}{120}+\frac{x^4}{12}+\frac{7x^3}{24}+\frac{5x^2}{12}+\frac{x}{5}\)là STN với mọi \(x\in N\)