Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2n + 1 \(⋮\)n - 5
=> 2.( n - 5 ) + 1 + 10 \(⋮\)n - 5
=> 2.( n - 5 ) + 11 \(⋮\)n - 5
=> 11 \(⋮\)n - 5 [ vì 2.( n - 5 ) \(⋮\)n - 5 ]
=> n - 5 \(\in\)Ư(11) = { -11 ;- 1;1 ; 11 }
=> n \(\in\){ -6; 4;6;16 }
Vậy: n \(\in\){ -6; 4;6;16 }
b) n2 + 3n - 13 \(⋮\)n + 3
=> n.n + 3n - 13 \(⋮\)n + 3
=> n.( n+ 3 ) + 3 . ( n + 3 ) - 13 - 3n - 9 \(⋮\)n + 3
=> 13 - 3n - 9 \(⋮\)n + 3 [ vì n.( n + 3 ) và 3.( n + 3 ) \(⋮\)n + 3 ]
=> 3n - 22 \(⋮\)n + 3
=>3.( n - 3 ) - 22 - 9 \(⋮\)n + 3
=> 3.( n - 3 ) - 31 \(⋮\)n + 3
=> 31 \(⋮\)n + 3 [ vì 3. ( n - 3 ) \(⋮\)n + 3 ]
=> n + 3 \(\in\)Ư ( 31 ) = { -31 ; -1 ; 1 ; 31 }
=> n \(\in\){ -34 ; -4; -2 ; 28 }
Vậy: n \(\in\){ -34 ; -4; -2 ; 28 }
c) n2 + 3 \(⋮\) n - 1
=> n.n + 3 \(⋮\) n - 1
=> n.( n - 1 ) + 3 - n \(⋮\) n - 1
=> 3 - n \(⋮\) n - 1 [ vì n.( n - 1 ) \(⋮\) n - 1 ]
=> n - 3 \(⋮\) n - 1
=> ( n - 1 ) - 2 \(⋮\) n - 1
=> n - 1 \(\in\)Ư( 2 )= { -2 ; - 1; 1 ; 2 }
=> n \(\in\){ -1 ; 0 ;2 ;3 }
vậy: n \(\in\){ -1 ; 0 ;2 ;3 }
ta có: A = 3 + 3^2 + ...+ 3^20 ( có 20 số hạng)
A = (3+3^2) + ...+ (3^19+3^20)
A = 3.(1+3) + ...+ 3^19.(1+3)
A = 3.4 + ...+ 3^19.4
A = 4.(3+...+3^19) chia hết cho 4
phần còn lại làm tương tự nha
B = (1 + 3) + (32+33)+.....+(389+390)
= 4 + 32 .(1 + 3) + .....+390.(1+3)
= 1 .4 + 32.4 + ..... +390.4
= 4.(1 + 32 + .... +390) chia hết cho 4
\(S=3+3^2+3^3+3^4+....+3^{89}+3^{90}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)
\(==3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^{88}\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right).\left(3+3^4+....+3^{88}\right)\)
\(=13\left(3+3^4+...+3^{88}\right)\)\(⋮\)\(13\)