Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x3 = x.x.x
y3 = y.y.y
Mà x > y > 0
=> x.x.x > y.y.y
=> x3 > y3 (đpcm)
Chắc thế
Từ x>y>0,ta có:
x>y =>xy>y2 (1)
x>y=>x2>xy (2)
Từ (1) và (2) ta suy ra:x2>y2
x2>y2=>x3>xy2 (3)
x2>y2=>xy2>y3 (4)
Từ (3) và (4)=>y3<x3(đpcm)
x> y > 0
=> x^3 là số dương
và y^3 cũng là số dương
mà x>y
=> x^3 > y^3
\(x^3>y^3< =>x^3-y^3>0< =>\left(x-y\right)\left(x^2+y^2+xy\right)>0\)
\(< =>\left(x-y\right)\left[\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2\right]>0\left(1\right)\)
Mà x>y>0 nên x-y > 0 , \(\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2>0\) với mọi x,y>0 nên (1) đúng
Vậy x3>y3
Bài giải
\(x^5+y^5=x-y\)
\(x^5-x+y^5+y=0\)
\(x\left(x^4-1\right)+y\left(y^4+1\right)=0\)
Đề sai nha !
+)Ta có : x4 + y4 < x4 + x3y + x2y2 + xy3 + y4
Mà x > y > 1 \( \implies\) x - y > 0
\( \implies\) ( x - y ) ( x4 + y4 ) < ( x - y ) ( x4 + x3y + x2y2 + xy3 + y4 ) ( * )
+)Ta có : ( x - y ) ( x4 + x3y + x2y2 + xy3 + y4 )
= x ( x4 + x3y + x2y2 + xy3 + y4 ) - y ( x4 + x3y + x2y2 + xy3 + y4 )
= x5 + x4y + x3y2 + x2y3 + xy4 - x4y - x3y2 - x2y3 - xy4 - y5
= x5 - y5
\( \implies\) ( x - y ) ( x4 + x3y + x2y2 + xy3 + y4 ) = x5 - y5 ( ** )
Từ ( * ) ; ( ** )
\( \implies\) ( x - y ) ( x4 + y4 ) < x5 - y5
Mà x5 - y5 < x5 + y5
\( \implies\) ( x - y ) ( x4 + y4 ) < x5 - y5
\( \implies\) ( x - y ) ( x4 + y4 ) < x - y
\( \implies\) x4 + y4 < 1 ( đpcm )
Sao hỏi không thấy bạn hồi âm nhỉ?
Câu này mình nghĩ sai đề rồi. Mình nghĩ đề vậy nè:
\(Cho:x>y>0\) và \(x^5+y^5=x-y.Cmr:x^4-y^4< 1\)
~~~~~~ Bài làm ~~~~~~~
Ta có: \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)
Lại có: \(x-y=x^5+y^5\Rightarrow\left(x^5+y^5\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=\left(x^5-y^5\right).1\)
Mà: \(x>y>0\) nên:
\(\Rightarrow x^5\ge y^5\ge0\Rightarrow x^5+y^5>x^5-y^5\)
\(\Rightarrow x^4+x^3y+x^2y^2+xy^3+y^4< 1\)
Lại có: \(x^3y+x^2y+xy^3>0\) nên:
\(\Rightarrow x^4+y^4< 1\left(đpcm\right)\)
cho ít phẩy y lớn hơn không chứng minh rằng hai chấm
ít mũ ba lớn hơn y mũ ba
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Từ x > y > 0 ta có:
\(x>y\Rightarrow xy>y^2\) (1)
\(x>y\Rightarrow x^2>xy\) (2)
Từ (1) và (2) suy ra x2 > y2.
\(x^2>y^2\Rightarrow x^3>xy^2\) (3)
\(x>y\Rightarrow xy^2>y^3\) (4)
Từ (3) và (4) suy ra x3 > y3.
kham khảo
Câu hỏi của Nguyễn Huy Hải - Toán lớp 7 - Học toán với OnlineMath
vào thống kê hỏi đáp của mk
hc tốt