M,N∈AB sao cho AM=MN=NB. Lấy E,F∈BC sa...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1/ a. Chứng minh công thức Hê-rông tính diện tích tam giác theo 3 cạnh a,b,c S=\(\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\) (p là nửa chu vi) b. Áp dụng chứng minh rằng nếu \(S=\dfrac{1}{4}\left(a+b-c\right)\left(a+c-b\right)\) thì tam giác đó là tam giác vuông 2/ Cho tứ giác ABCD. Lấy \(M,N\in AB\) sao cho AM=MN=NB. Lấy \(E,F\in BC\) sao cho BE=EF=FC. Lấy \(P,Q\in CD\) sao cho CP=PQ=QD. Lấy \(G,H\in AD\) sao cho DG=GH=HA. Gọi...
Đọc tiếp

1/ a. Chứng minh công thức Hê-rông tính diện tích tam giác theo 3 cạnh a,b,c S=\(\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\) (p là nửa chu vi)

b. Áp dụng chứng minh rằng nếu \(S=\dfrac{1}{4}\left(a+b-c\right)\left(a+c-b\right)\) thì tam giác đó là tam giác vuông

2/ Cho tứ giác ABCD. Lấy \(M,N\in AB\) sao cho AM=MN=NB. Lấy \(E,F\in BC\) sao cho BE=EF=FC. Lấy \(P,Q\in CD\) sao cho CP=PQ=QD. Lấy \(G,H\in AD\) sao cho DG=GH=HA. Gọi A',B' là giao điểm của MQ và NP với EH, C',D' là giao điểm của MQ và NP với FG. Chứng minh rằng

a. \(S_{MNPQ}=\dfrac{1}{3}S_{ABCD}\) b. \(S_{A'B'C'D'}=\dfrac{1}{9}S_{ABCD}\)

3/ Lấy M tùy ý nằm trong tam giác ABC. Gọi D,E,F là hình chiếu của M trên BC,AC,AB. Đặt BC=a,AC=b,AB=c,MD=x,ME=y,MF=z. Chứng minh rằng

a. ax+by+cz=2S (S=Sabc)

b. \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}\ge\dfrac{2p^2}{S}\) (\(p=\dfrac{a+b+c}{2}\) )

0
16 tháng 12 2019

Bai 1

Bo de :  \(\Delta ABC\) trung tuyen AD 

\(\Rightarrow S_{ADB}=S_{ADC}\)

cai nay ban tu chung minh nha

Ap dung bo de va bai nay => \(S_{MNPQ}=S_{MQP}+S_{MNP}=\frac{1}{3}S_{MDC}+\frac{1}{3}S_{ABP}\)

ta phai chung minh \(S_{MDC}+S_{ABP}=S_{ABCD}\)

That vay co \(S_{AMP}=S_{AMD},S_{MBP}=S_{MBC}\)

=> \(S_{ABP}+S_{MDC}=S_{ADM}+S_{MDC}+S_{MBC}=S_{ABCD}\)

=> dpcm

16 tháng 12 2019

Hình như sai ở dòng thứ 2 từ dưới lên trên ấy

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .1) C/m M, N lần lượt là trung điểm của AD và BC.2) tứ giác EFQP là hình gì ?3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại...
Đọc tiếp

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .

1) C/m M, N lần lượt là trung điểm của AD và BC.

2) tứ giác EFQP là hình gì ?

3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm

4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)

bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M, N . C/m rằng : 1) M là trung điểm của AN.

2) AM = MN = NC .

3) 2EN = DM + BC .

4)\(S_{ABC}=3S_{AMB}\)

bài 3 : cho hình thang ABCD ( AB //CD ) có đg cao AH = 3 cm và AB = 5cm , CD = 8cm gọi E, F , I lần lượt là trung điểm của AD , BC và AC.

1) C/m E ,F ,I thẳng hàng .

2) tính \(S_{ABCD}\)

3) so sánh \(S_{ADC}\) và \(2S_{ABC}\)

bài 4: cho tứ giác ABCD . gọi E, F, I lần lượt là trung điểm AD , BC và AC .1) C/m E, I , F thẳng hàng

2) tính EF≤ AB+CD / 2

3) tứ giác ABCD phải có điều kiện gì thì EF = AB+CD / 2

0
AH
Akai Haruma
Giáo viên
23 tháng 2 2018

Lời giải:

Vì \(AB\parallel DC\) nên áp dụng định lý Thales:

\(\frac{AQ}{QN}=\frac{AB}{DN}=\frac{DC}{DN}=3\)

\(\Rightarrow \frac{AQ}{AN}=\frac{3}{4}\)

Vì \(AD\parallel BC\) nên áp dụng định lý Thales:

\(\frac{AP}{PM}=\frac{AD}{BM}=\frac{BC}{BM}=2\)

\(\Rightarrow \frac{AP}{AM}=\frac{2}{3}\)

Kẻ \(QL, NT\perp AM\) \((L,T\in AM)\)

\(\Rightarrow QL\parallel NT\Rightarrow \frac{QL}{NT}=\frac{AQ}{AN}\) (theo định lý Thales)

Ta có:

\(\frac{S_{APQ}}{S_{AMN}}=\frac{QL.AP}{NT.AM}=\frac{QL}{NT}.\frac{AP}{AM}=\frac{AQ}{AN}.\frac{AP}{AM}=\frac{3}{4}.\frac{2}{3}=\frac{1}{2}\)

(đpcm)

4 tháng 1 2018

B C D A E F H M N

a) Xét tam giác AFB và tam giác DMA có:

\(\widehat{ABF}=\widehat{DAM}\)  (Cùng phụ với góc \(\widehat{BAM}\)  )

\(\widehat{FAB}=\widehat{MDA}=90^o\)

AB = AD

\(\Rightarrow\Delta AFB=\Delta DMA\)  ( Cạnh góc vuông, góc nhọn kề)

\(\Rightarrow AF=DM\)

\(\Rightarrow DM=AE\)

Xét tứ giác AEMD có AE song song và bằng DM nên nó là hình bình hành.

Lại có \(\widehat{EAD}=90^o\)  nên AEMD là hình chữ nhật.

b) Đặt \(\frac{AE}{EB}=k\); Ta có các tỉ số: \(\frac{AE}{EB}=\frac{MD}{MC}=\frac{AD}{CN}=k\)

Ta có:  \(\frac{S_{AEH}}{S_{ABH}}=\frac{k}{k+1}\)

Ta có \(\frac{AE}{EB}=\frac{MD}{MC}=\frac{AD}{CN}=\frac{BC}{CN}=\frac{S_{BCH}}{S_{BNH}}=\frac{k}{k+1}\)

Vậy thì \(\frac{S_{AEH}}{S_{ABH}}=\frac{S_{CBH}}{S_{BNH}}\Rightarrow\frac{S_{AEH}}{S_{ABH}}=\frac{4S_{AEH}}{S_{BNH}}\Rightarrow\frac{S_{BNH}}{S_{BAH}}=\frac{1}{4}\)

\(\Rightarrow\frac{AH}{HN}=\frac{1}{4}\Rightarrow\frac{AF}{BN}=\frac{1}{4}\)

Ta có: \(\frac{AF}{BN}=\frac{AF}{BC+CN}=\frac{AF}{\left(k+1\right)AF+\left(\frac{k+1}{k}\right)AF}=\frac{1}{4}\)

\(\Rightarrow k=1\)

Vậy thì AE = EB hay E, F là trung điểm AB, AC.

Từ đó suy ra \(EF=\frac{BD}{2}=\frac{AC}{2}\)

Vậy AC = 2EF.

c) Ta thấy ngay \(\Delta ADM\sim\Delta NCM\left(g-g\right)\)

\(\Rightarrow\frac{AM}{MN}=\frac{AD}{CN}\Rightarrow AM.CN=MN.AD\)

\(\Rightarrow AM\left(AD+CN\right)=AN.AD\)

\(\Rightarrow AM.BN=AD.AD\)

\(\Rightarrow AM^2.BN^2=AN^2.AD^2\)

\(\Rightarrow AM^2\left(AD^2+BN^2-AD^2\right)=AN^2.AD^2\)

\(\Rightarrow AM^2\left(AN^2-AD^2\right)=AN^2.AD^2\)

\(\Rightarrow AM^2.AN^2=AM^2.AD^2+AN^2.AD^2\)

\(\Leftrightarrow\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)

7 tháng 4 2019

phần b bạn giải dài quá 

ta có tam giác BAF đồng dạng với BHA (g.g)

=> af/ah=bf/ab=ab/hc

<=> af/ah=ab/hb

<=>  ae/ah=bc/hb

mà hbc=bah

suy ra hbc đồng dạng với hae (cgc)

mà ti le diện tích đồng dạng bằng bình phương tỉ lệ đồng dạng

suy ra (ae/bc)^2=1/4

=>ae/ab=1/2

5 tháng 4 2020

a) Gọi E là trung điểm BK

Chứng minh được QE là đường trung bình \(\Delta\)KBC nên QE//BC => QE _|_ AB (vì BC_|_AB) và \(QE=\frac{1}{2}BC=\frac{1}{2}AD\)

Chứng minh AM=QE và AM//QE => Tứ giác AMQE là hình bình hành

Chứng minh AE//NP//MQ (3) 

Xét \(\Delta AQB\)có BK và QE là 2 đường cao của tam giác

=> E là trực tâm tam giác nên AE là đường cao thứ 3 của tam giác AE _|_ BQ

=> BQ _|_ NP

b) Vẽ tia Ax vuông góc với AF. Gọi giao Ax và CD là G

Chứng minh \(\widehat{GAD}=\widehat{BAP}\)(cùng phụ \(\widehat{PAD}\)

=> \(\Delta\)ADG ~ \(\Delta\)ABP (gg) => \(\frac{AP}{AG}=\frac{AB}{AD}=2\Rightarrow AG=\frac{1}{2}AP\)

Ta có \(\Delta\)AGF vuông tại A có AD _|_ GF nên AG.AF=AD.GF(=2SAGF)

=> \(AG^2\cdot AF^2=AD^2\cdot GF^2\left(1\right)\)

Ta chia cả 2 vế củ (1) cho \(AD^2\cdot AG^2\cdot AF^2\)

Mà \(AG^2+AF^2=GF^2\)(định lý Pytago)

\(\Rightarrow\frac{1}{AD^2}=\frac{1}{AG^2}+\frac{1}{AF^2}\Rightarrow\frac{1}{\left(\frac{1}{2}AB\right)^2}=\frac{1}{\left(\frac{1}{2}AP\right)^2}+\frac{1}{AF^2}\)

\(\Rightarrow\frac{4}{AB^2}=\frac{4}{AP^2}+\frac{1}{AF^2}\Rightarrow\frac{1}{AB^2}=\frac{1}{AP^2}+\frac{1}{4AF^2}\)

5 tháng 4 2020

Cảm ơn nhiều ạ!