K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2018

a)

Xét tam giác EHB và tam giác DHC có :

\(\widehat{EHB}=\widehat{DHC}\left(đđ\right)\)

\(\widehat{HEB}=\widehat{HDC}\)

\(\Rightarrow\) tam giác EHB đồng dạng với tam giác DHC (g-g)

1 tháng 4 2018

b)

Do tam giác EHB đồng dạng với tam giác DHC 

\(\Rightarrow\frac{EH}{DH}=\frac{HB}{HC}\)

Xét tam giác HED và tam giác HBC có :

\(\frac{EH}{DH}=\frac{HB}{HC}\)

\(\widehat{EHD}=\widehat{BHC}\)

\(\Rightarrow\) tam giác HED đồng dạng với tam giác HBC (c-g-c)

2 tháng 4 2018

a)  Xét  \(\Delta ADB\) và    \(\Delta AEC\)  co:

\(\widehat{ADB}=\widehat{AEC}=90^0\)

\(\widehat{A}\)   CHUNG

Suy ra:   \(\Delta ADB~\Delta AEC\)

b)  Xét   \(\Delta EHB\)  và     \(\Delta DHC\) có:

\(\widehat{HEB}=\widehat{HDC}=90^0\)

\(\widehat{EHB}=\widehat{DHC}\)  (đối đỉnh)

suy ra:   \(\Delta EHB~\Delta DHC\)

\(\Rightarrow\)\(\frac{EH}{DH}=\frac{HB}{HC}\)

\(\Rightarrow\)\(HB.DH=HC.HE\)

18 tháng 3 2017

bạn tự làm câu a,b,c nhá.

d,Xét tam giác ABD và tam giác ACE có:

Chung góc A

góc ADB=góc AEC(=90 độ)

suy ra tam giác ABC đồng dạng tam giác ACE(g.g)

suy ra

 AB/AC=AD/AE(đ/n 2 tam giác đồng dạng)

suy ra AB.AE=AC.AD(dieu phai cm)

e.Kẻ AH vuông góc với BC tại I

Xét BIH và BCD có:(mk viết tắt Tam giác nha)

Chung góc B

góc I=góc D(=90 độ)

suy ra BHI đồng dạng BCD(g.g)

suy ra HB/BC=BI/BD(đ/n 2 tam giác đồng dạng)

suy ra BH.BD=BC.BI (1)

tương tự xét CHI đồng dạng CBE(chung goc C;goc I=gocE=90 độ)

suy ra CH.CE=BC.IC (2)

từ (1) và (2) suy raBH.BD+CH.CE=BC.BI+BC.IC

                                                 =BC.(BI+IC)

                                                 =BC.BC

                                                 =BC2

Vậy BH.BD+CH.CE=BC2.

5 tháng 8 2021

cho mik xin câu a b đi bạn

 

25 tháng 10 2021

undefinedundefined

đây là đáp án bạn nhé

26 tháng 10 2021

undefined

ảnh kia của mình nó bị thiếu nhé

11 tháng 3 2017

a , b, c mink lam đung do nhớ k cho mink nha

11 tháng 3 2017

Mink chứng mink từng câu nha nhưng phần dễ sẽ làm hơi tắt nên bn đọc kĩ nha

a, Xét tam giác ADB và tam giác AEC có 

Góc ADB = Góc AEC ( = 90 )

Góc BAC chung 

Suy ra tam giác ADB đồng dạng với tam giác AEC ( g.g )

b , 

Có tam giác ADB đồng dạng với tam giác AEC ( c.m.t )

AD/AE = AB/AC ( định nghĩa 2 tam giác đồng dạng )

hay AD/AB = AE/AC 

Xét tam giác AED và tam giác ACB có 

BAC chung 

AD/AB = AE/AC ( c.m.t)

Suy ra tam giác AED đồng dạng với tam giác ACB ( g.g )

a: Xét ΔEHB vuông tại E và ΔDHC vuông tại D có 

\(\widehat{EHB}=\widehat{DHC}\)

Do đó:ΔEHB\(\sim\)ΔDHC

b: Ta có: ΔEHB\(\sim\)ΔDHC

nên HE/HD=HB/HC

=>HE/HB=HD/HC

Xét ΔHED và ΔHBC có 

HE/HB=HD/HC

\(\widehat{EHD}=\widehat{BHC}\)

Do đó: ΔHED\(\sim\)ΔHBC

c: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc DAB chung

DO đó: ΔADB\(\sim\)ΔAEC

Suy ra: AD/AE=AB/AC

hay AD/AB=AE/AC

Xét ΔADE và ΔABC có 

AD/AB=AE/AC

góc EAD chung

DO đó: ΔADE\(\sim\)ΔABC

12 tháng 8 2020

B C A E D F H

Bài làm:

a) Δ EHB ~ Δ DHC (g.g) vì:

\(\widehat{EHB}=\widehat{DHC}\) (đối đỉnh)

\(\widehat{BEH}=\widehat{CDH}=90^0\)

=> đpcm

b) Theo phần a, 2 tam giác đồng dạng

=> \(\frac{HE}{HB}=\frac{HD}{HC}\)

Δ HED ~ Δ HBC (c.g.c) vì:

\(\frac{HE}{HB}=\frac{HD}{HC}\) (chứng minh trên)

\(\widehat{EHD}=\widehat{BHC}\) (đối đỉnh)

=> đpcm

c) Δ ABD ~ Δ ACE (g.g) vì:

\(\widehat{ADB}=\widehat{AEC}=90^0\)

\(\widehat{A}\) chung

=> \(\frac{AD}{AE}=\frac{AB}{AC}\)

Δ ADE ~ Δ ABC (c.g.c) vì:

\(\frac{AD}{AE}=\frac{AB}{AC}\) (chứng minh trên)

\(\widehat{A}\) chung

=> đpcm

d) Gọi F là giao của AH với BC

Δ BHF ~ Δ BCD (g.g) vì:

\(\widehat{BFH}=\widehat{BDC}=90^0\)

\(\widehat{B}\) chung

=> \(\frac{BF}{BH}=\frac{BD}{BC}\Rightarrow BD.BH=BF.BC\left(1\right)\)

Tương tự ta chứng minh được:

\(CH.CE=FC.BC\left(2\right)\)

Cộng vế (1) và (2) lại ta được:

\(BD.BH+CH.CE=\left(BF+FC\right)BC=BC.BC=BC^2\)

=> đpcm