K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: H và D đối xứng với nhau qua AB

nên AH=AD; BH=BD

=>ΔHAD cân tại A

=>AB là phân giác của góc HAD(1)

Ta có H và E đối xứngvới nhau qua AC

nên AH=AE; CH=CE

=>ΔAHE cân tại A

=>AC là phân giác của góc HAE(2)

Từ (1) và (2) suy ra góc DAE=2xgóc BAC=180 độ

=>D,A,E thẳng hàng

b: Xét ΔAHB và ΔADB có

AH=AD

BH=BD

AB chung

Do đó: ΔAHB=ΔADB

Suy ra: góc ADB=90 độ

=>BD vuông góc với DE(3)

Xét ΔAHC và ΔAEC có

AH=AE

HC=EC

AC chung

Do đó: ΔAHC=ΔAEC

Suy ra: góc AEC=90 độ

=>CE vuông góc với ED(4)

Từ (3) và (4) suy ra BDEC là hình thang vuông

c: ED=AE+AD
=AH+AH=2AH

d: Xét ΔDHE có 

HA là đường trung tuyến

HA=DE/2

Do đó: ΔDHE vuông tại H

13 tháng 1 2020

a) Xét ΔDAN,ΔHANΔDAN,ΔHAN có :

HN=ND(gt)HN=ND(gt)

ANDˆ=ANHˆ(=90O)AND^=ANH^(=90O)

AN:ChungAN:Chung

=> ΔDAN=ΔHAN(c.g.c)ΔDAN=ΔHAN(c.g.c)

b) Xét ΔAMH,ΔAMEΔAMH,ΔAME có :

HM=ME(gt)HM=ME(gt)

AMHˆ=AMEˆ(=90o)AMH^=AME^(=90o)

AM:ChungAM:Chung

=> ΔAMH=ΔAME(c.g.c)ΔAMH=ΔAME(c.g.c)

Xét tứ giác ANHM có :

Nˆ=90O(HN⊥AB)N^=90O(HN⊥AB)

Aˆ=90O(ΔABC⊥A)A^=90O(ΔABC⊥A)

Mˆ=90O(HM⊥AC)M^=90O(HM⊥AC)

=> Tứ giác ANHM là hình chữ nhật

=> {NH=AMNA=HM{NH=AMNA=HM (tính chất hình chữ nhật)

Ta dễ dàng chứng minh được : ΔANH=ΔAMH(c.c.c)ΔANH=ΔAMH(c.c.c)

Mà : {ΔAND=ΔANHΔAHM=ΔAEM(cmt){ΔAND=ΔANHΔAHM=ΔAEM(cmt)

Suy ra : ΔAND=ΔAMEΔAND=ΔAME

=> DA=AEDA=AE(2 cạnh tương ứng) (*)

c) Từ (*) => A là trung điểm của DE

Do đó : D,A,E thẳng hàng (đpcm)

a: Xét ΔAHD có 

AN là đường cao

AN là đường trung tuyến

Do đó:ΔAHD cân tại A

mà AB là đường trung tuyến

nên AB là tia phân giác của góc HAD(1)

Xét ΔAHE có 

AM là đường cao

AM là đường trung tuyến

Do đó: ΔAHE cân tại A

mà AC là đường cao

nên AC là tia phân giác của góc HAE(2)

Từ (1) và (2) suy ra \(\widehat{DAE}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)=2\cdot90^0=180^0\)

hay D,A,E thẳng hàng

b: Xét ΔHED có

M là trung điểm của HE

N là trung điểm của HD

Do đó: MN là đường trung bình

=>MN//ED

d: Xét ΔDHE có 

HA là đường trung tuyến

HA=DE/2

Do đó:ΔDHE vuông tại H

14 tháng 2 2016

câu a mình đã làm đc r các bạn giúp mấy câu sau nhé

 

14 tháng 2 2016

moi hok lop 6

29 tháng 5 2017

ĐỀ QUẬN BÌNH TÂN NĂM 2016 - 2017

a) Xét \(\Delta ABH\)và \(\Delta ACH\)ta có:

AH là cạnh chung

AB = AC ( \(\Delta ABC\)cân tại A)

BH = CH ( H là trung điểm của BC)

\(\Rightarrow\Delta ABH=\Delta ACH\left(c-c-c\right)\)

Xét \(\Delta ABC\)cân tại A ta có:

AH là đường trung tuyến ( H là trung điểm của BC)

\(\Rightarrow\)AH là đường cao của \(\Delta ABC\)

\(\Rightarrow AH⊥BC\)tại H.

b) Xét \(\Delta BDH\)vuông tại D và \(\Delta CEH\)vuông tại E ta có:

BH = CH ( H là trung điểm của BC)

\(\widehat{DBH}=\widehat{ECH}\)(\(\Delta ABC\)cân tại A)

\(\Rightarrow\Delta BDH=\Delta CEH\left(ch-gn\right)\)

\(\Rightarrow\)BD = CE ( 2 cạnh tương ứng)

c) Ta có:

AB = AC (\(\Delta ABC\)cân tại A)

BD = CE ( cmt)

\(\Rightarrow AB-BD=AC-CE\)

\(\Rightarrow AD=AE\)

\(\Rightarrow\Delta ADE\)cân tại A

\(\Rightarrow\widehat{ADE}=\frac{180^o-\widehat{DAE}}{2}\)

Mà \(\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\)

Nên \(\widehat{ADE}=\widehat{ABC}\)

Mặt khác 2 góc này nằm ở vị trí đồng vị

\(\Rightarrow\)DE // BC.

d) Nối A với I.

Ta có: 

\(\hept{\begin{cases}HE=HM+ME\left(M\in HE\right)\\HM=EN\left(gt\right)\end{cases}}\)

\(\Rightarrow HE=EN+ME\)

\(\Rightarrow HE=MN\)

Xét \(\Delta AEN\)vuông tại E ta có:

\(\hept{\begin{cases}AN^2=AE^2+EN^2\left(Pitago\right)\\AE=AD\left(cmt\right)\\EN=HM\left(gt\right)\end{cases}}\)

\(\Rightarrow AN^2=AD^2+HM^2\)

\(\Rightarrow AN^2=AD^2+HI^2-MI^2\)

\(\Rightarrow AN^2=AD^2+HI^2-\left(NI^2-MN^2\right)\)

\(\Rightarrow AN^2=AD^2+HI^2-NI^2+HD^2\)

\(\Rightarrow AN^2=AD^2+HD^2+HI^2-NI^2\)

\(\Rightarrow AN^2=AH^2+HI^2-NI^2\)

\(\Rightarrow AN^2=AI^2-NI^2\)

\(\Rightarrow AI^2=AN^2+NI^2\)

\(\Rightarrow\Delta ANI\)vuông tại N ( Định lý Pitago đảo)

\(\Rightarrow IN⊥AN\)tại N.