Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Xét: Tam giác ABM và tam giác CDM
Ta có : AM = MC(Vì M là trung điểm của AC)
M1=M3(đđ)
MD=MB(gt)
=> Tam giác ABM = Tam giác CDM.( c - g - c )
b)
Xét: Tam giác BMC và Tam giac DMA
Ta có: BM =DM
M2 = M4(đđ)
MA=MC(cmt)
=> Tam giác BMC = Tam giác DMA ( c - g - c )
=> góc MBC = góc MDA( hai góc tương ứng )
Mà góc MBC và góc MDA ở vị trí so le trong
=> AD//BC.
a) Xét \(\Delta AMB\)và \(\Delta CMD\)có:
\(AM=CM\)(gt)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
\(BM=DM\left(gt\right)\)
Suy ra \(\Delta AMB=\)\(\Delta CMD\left(c-g-c\right)\)
b) \(\Delta AMB=\)\(\Delta CMD\)(c/m ở câu a) nên \(\widehat{BAM}=\widehat{DCM}\)
Mà hai góc này ở vị trí so le trong nên \(AB//CD\)(đpcm)
c) Do \(AB//CD\)(c/m ở câu b) nên \(\widehat{ABC}=\widehat{NCB}\)(so le trong)
Xét \(\Delta ABC\)và \(\Delta NCB\)có:
\(AB=NC\)(cùng bằng \(CD\))
\(\widehat{ABC}=\widehat{NCB}\)(cmt)
\(BC\) :cạnh chung
Suy ra \(\Delta ABC=\)\(\Delta NCB\left(c-g-c\right)\)
Suy ra \(\widehat{NBC}=\widehat{ACB}\)(hai góc tương ứng)
Mà hai góc này ở vị trí so le trong nên \(BN//AC\)(đpcm)
a/xét ABM=CDM(c-g-c)
ABMˆ=CDMˆ
b/Tứ giác ABCD là hình bình hành vì 2 dg chéo cắt nhau tại trung điểm mỗi dg AB//CD
c/MC là dg TBinh của tam giác DBN AC//BN
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB//CD