Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a )
xét tam giác ADB và ADC
A B C D
góc BAD =ADC (gt)
góc ABD= góc ACD(vì ABC cân tại a)
AB=AC (vì ABC cân)
=> chúng bằng nhau (gcg)
=>BĐ=ĐC (2 cạnh tương ứng)
b)
A B C D H K
xét tam giác HBD và KDC
goc BHD =DKC=90
goc B=C
BD=DC(cmt)
=> chúng bằng nhau
=>DH=DK (2 cạnh tương ứng)
c)
A B C D H K
câu này mik đag nghĩ sorry nhé
mik sẽ giải sau
a) Xét ΔABD và ΔACD có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))
AD chung
Do đó: ΔABD=ΔACD(c-g-c)
Suy ra: DB=DC(hai cạnh tương ứng)
b) Xét ΔDBH vuông tại H và ΔDCK vuông tại K có
DB=DC(cmt)
\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔDBH=ΔDCK(cạnh huyền-góc nhọn)
Suy ra: DH=DK(hai cạnh tương ứng)
\(a.\)Xét \(\Delta ABD\)vuông tại \(A\) và \(\Delta HBD\) vuông tại \(H\)
có: \(AD\): cạnh chung
\(\widehat{ABD}=\widehat{HBD}\) ( vì \(AD\)là tia phân giác của \(\widehat{ABH}\))
\(\Rightarrow\)\(\Delta ABD=\Delta HBD\) (cạnh huyền - góc nhọn)
\(\Rightarrow\) \(AD=DH\) ( 2 cạnh tương ứng)
\(b.\) Xét \(\Delta DCH\)vuông tại \(H\)có: \(DH< DC\)(vì trong tam giác vuông, cạnh huyền là cạnh lớn nhất)
mà \(AD=DH\) \(\Rightarrow\)\(AD< DC\)(đpcm)
\(c.\)Xét \(\Delta KBH\)và \(\Delta CBA\)có: \(\widehat{BHK}=\widehat{BAC}=90^0\) ( gt )
\(BH=AB\) ( vì \(\Delta ABD=\Delta HBD\))
\(\widehat{KBH}\): góc chung ( gt )
\(\Rightarrow\)\(\Delta KBH=\Delta CBA\) (g.c.g)
\(\Rightarrow\)\(BK=BC\)(2 cạnh tương ứng)
\(\Rightarrow\)\(\Delta KBC\)cân tại \(B\)
Tự vẽ hình nha
a) ABD và EBD có: abd = ebd (bd la phân giác), BD chung
=> bằng nhau (cạnh huyền - góc nhọn)
=> AB = Be (2 cạnh tương ứng) => abe cân
b) ta có: AD = DE (vì tg ABD = tg EBD) mà DE < CD (Cạnh huyên là cạnh lớn nhất) nên AD < CD (ĐPCM)
5 )
tự vẽ hình nha bạn
a)
Xét tam giác ABM và tam giác ACM có :
AM cạnh chung
AB = AC (gt)
BM = CM (gt)
suy ra : tam giác ABM = tam giác ACM ( c-c-c)
suy ra : góc BAM = góc CAM ( 2 góc tương ứng )
Hay AM là tia phân giác của góc A
b)
Xét tam giác ABD và tam giác ACD có :
AD cạnh chung
góc BAM = góc CAM ( c/m câu a)
AB = AC (gt)
suy ra tam giác ABD = tam giác ACD ( c-g-c)
suy ra : BD = CD ( 2 cạnh tương ứng)
C) hay tam giác BDC cân tại D
Bài 4: a) Xét ABE vàHBE có:
BE chung
ABE= EBH (vì BE là phân giác)
=> ABE=HBE (cạnh huyền- góc nhọn)
b, Vì ABE=HBE(cmt)
=> BA = BH và EA = EH
=> điểm B, E cách đều 2 mút của đoạn thẳng AH
=>BE là đường trung trực của đoạn thẳng AH
c, Vì AC vuông góc BK => EAK = \(90\) độ
EH vuông góc BC => EHC = 90 độ
Xét AEK vàHEC có:
EAK = EHC (= 90độ)(cmt)
AE = EH (cmt)
AEK = HEC (đối đỉnh)
=> AEK HEC (g.c.g)
=> EK = EC (2 cạnh tương ứng)
Xét HEC vuông tại H (vì EHC = 90 độ )
có EH < EC(cạnh huyền lớn hơn cạnh góc vuông)
Mà AE = EH (cmt) => AE < EC
Bạn tự vẽ hình nha!!!
3a.
Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:
ABD = EBD (BD là tia phân giác của ABE)
BD là cạnh chung
=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)
=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE
=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE
=> BD là đường trung trực của AE.
3b.
Xét tam giác AFD và tam giác ECD có:
FAD = CED ( = 90 )
AD = ED (tam giác ABD = tam giác EBD)
ADF = EDC (2 góc đối đỉnh)
=> Tam giác ADF = Tam giác EDC (g.c.g)
=> DF = DC (2 cạnh tương ứng)
3c.
Tam giác ADF vuông tại A có:
AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)
mà FD = CD (theo câu b)
=> AD < CD.
3a.
Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:
ABD = EBD (BD là tia phân giác của ABE)
BD là cạnh chung
=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)
=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE
=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE
=> BD là đường trung trực của AE.
3b.
Xét tam giác AFD và tam giác ECD có:
FAD = CED ( = 90 )
AD = ED (tam giác ABD = tam giác EBD)
ADF = EDC (2 góc đối đỉnh)
=> Tam giác ADF = Tam giác EDC (g.c.g)
=> DF = DC (2 cạnh tương ứng)
3c.
Tam giác ADF vuông tại A có:
AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)
mà FD = CD (theo câu b)
=> AD < CD.
a) Có \(\Delta\)ABC cân tại A (gt), AD là phân giác \(\widehat{BAC}\)(D\(\in\)BC)
=> AD là đường phân giác của \(\Delta\)ABC
Mà trong tam giác cân đường phân giác trùng với đường trung tuyến
=> D là trung điểm của BC
=> DB=DC (đpcm)
b) Xét hai tam giác vuông ΔAKD và ΔAKD
Ta có: AD cạnh chung
\(\widehat{CAD}=\widehat{BAD}\left(gt\right)\)
\(\widehat{AHD}=\widehat{AKD}=90^o\)
Vậy ΔAKD=ΔAKD(cạnh huyền.góc nhọn)
Vậy DK=DH (cạnh tương ứng)
Nên ΔDHK cân
c. Do ΔAHK có AK=AH nên cân
Vậy \(\widehat{AKH}=\widehat{AHK}=\frac{180^o-\widehat{KAH}}{2}\)
Do ΔABC cân nên \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{KAH}}{2}\)
Nên \(\widehat{AKH}=\widehat{ACB}\) mà hai góc trên ở vị trí đồng vị nên HK//BC