K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có AD/AB=AE/AC

nên DE//BC và DE=BC/2

=>DE//BF và DE=BF

=>BDEF là hình bình hành

b: Xét ΔBAC có BD/BA=BF/BC

nên DF//AC và DF=AC/2

=>DF=EK

Xét tứ giác DEFK cos

DE//FK

DF=EK

Do đó: DEFK là hình thang cân

2 tháng 2 2021

a/ Xét t/g ABC có D,E lần lượt là trung điểm AB ; AC

=> DE là đường trung bình t/g ABC

=> DE // BC ; DE = BC/2

=> DE // BF ; DE = BF(do F là trung điểm BC)

=> Tứ giác BDEF là hình bình hành

b/ Có BDEF là hbh

=> EF = BD 

Xét t/g ABK vuông tại K có KD là đường trung tuyến

=> KD = 1/2 AB = BD=> EF = KD

Mà DE // BC

=> DE // KF

=> Tứ giác DEFK là htc

c/ Xét t/g AHC có ME là đường trung binh

=> ME = 1/2 HC ; ME // HC (1)

Xét t/g BHC có NF là đường trung bình

=> NF = 1/2 HC ; NF // HC (2)

(1) ; (2)

=> ME = NF ; ME // NF (3)

Xét t/g ABH có MN là đường trung bình

=> MN // AB ; MN = 1/2 ABMà

HC ⊥ AB

NF // HC=> MN ⊥ NF (4)(3) ; (4)

=> MNFE là hcn

=> NE = MF ; NE, MF cắt nhau tại trung điểm mỗi đoạn

CMTT ta có đpcm

22 tháng 12 2021
xin lũi câu tính S mìnk khum làm đc :Đ
22 tháng 12 2021

ABCHEDF----------

a) Vì E là trung điểm AC; D trung điểm AB (gt)

=> ED là đường tb của tam giác ABC

=> ED//CB;ED=1/2CB

Mà F là trung điểm BC (gt)=>FB=FC=1/2BC

Do đó: ED//FB;ED=1/2FB

Nên tứ giác BDEF là hbh (2 cạnh đối // và = nhau)

b) Nối H với D ta có:

Xét tam giác vuông ABC có DA=DB=1/2AB (D trung đ AB)

=> HD là đường trung tuyến của tam giác ABC (đg trung tuyến ứng vs cạnh huyền)

=>HD=1/2AB

Nên: HD=DB (1)

gọi I nằm giữa D và F

Vì AC//DF và DF=1/2 AC (DF là đg tb;cmt)

=>AE=DF;AE//DF

=>AEFD là hbh (2 cạnh đối // và =nhau)

Mà H thuộc AE thuộc D và I thuộc DF

=> HE//DF=> HEFD là hình thang 

Lại có: đường cao BH=> ^BHC=90o

=> HEFD là hình thang cân

=> ^AEF=90o

=>AEFD là hcn (hbh có 1 góc _|_)

=> ^DFE=90(2)

Từ (1) và (2)=> DF là đường trung trực của ^HDB

=> I trung điểm HB

Nên:H và B đối xứng với nhau qua DF (đpcm)

c) Để BDEF là hcn => hbh BDEF có 1 góc vuông 

=> ^FEC=90o

Mà EA=EC

=>FE là đường trung tuyến của cạnh AC

=>EA=EC=1/2AC

Do đó FD cũng là đường trung tuyến cạnh AB

=>DA=DB=1/2AB

Nên: AC=AB

=> tam giác ABC là tam giác cân tại A

Vậy tam giác ABC là tam giác cân tại A thì BDEF là hcn.

18 tháng 8 2018

Hình bạn tự vẽ nha.

a, \(\Delta ABC\)có: \(AD=DB\left(gt\right)\)

                            \(AE=EC\left(gt\right)\)

\(\Rightarrow\)DE là đường trung bình của \(\Delta ABC\Rightarrow\hept{\begin{cases}DE//BC\\DE=\frac{1}{2}BC\end{cases}}\)

                                                               mà \(BF=\frac{1}{2}BC\left(gt\right)\)

\(\Rightarrow\hept{\begin{cases}DE//BF\\DE=BF\end{cases}}\)

Tứ giác BDEF có: \(\hept{\begin{cases}DE//BF\left(cmt\right)\\DE=BF\left(cmt\right)\end{cases}}\)

\(\Rightarrow\)BDEF là hình bình hành

b, Ta có: I đối xứng với J qua E \(\Rightarrow\)E là trung điểm của IJ

Tứ giác AICJ có 2 đường chéo AC và IJ cắt nhau tại trung điểm E của mỗi đường \(\Rightarrow\)AICJ là hình bình hành mà \(\widehat{AIC}=90^o\Rightarrow\)AICJ là hình chữ nhật

c, \(\Delta ABC\)có: \(AD=BD\left(gt\right)\)

                            \(BF=FC\left(gt\right)\)

\(\Rightarrow\)DF là đường trung bình của \(\Delta ABC\Rightarrow DF//AC\)

Tứ giác ADKE có \(DK//AE\left(cmt\right)\Rightarrow\)ADKE là hình thang

Tương tự ta có tứ giác KECF là hình thang

BDEF là hình bình hành \(\Rightarrow DK=KF=\frac{1}{2}DF\)

Ta có: \(S_{ADKE}=\frac{\left(DK+AE\right).KE}{2}\)

\(S_{KECF}=\frac{\left(KF+EC\right).KE}{2}\)

mà \(DK=KF,AE=EC\left(cmt\right)\)

\(\Rightarrow S_{ADKE}=S_{KECF}\)

Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Qtheo thứ tự là trung điểm của AD, AF, EF, ED.a) Tứ giác MNPQ là hình gì? Vì sao?7b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M quaAB, E là giao điểm của MH và AB....
Đọc tiếp

Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Q
theo thứ tự là trung điểm của AD, AF, EF, ED.
a) Tứ giác MNPQ là hình gì? Vì sao?

7

b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?
c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?
Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M qua
AB, E là giao điểm của MH và AB. Gọi K là điểm đối xứng với M qua AC, F là giao điểm của MK
và AC.
a) Xác định dạng của các tứ giác AEMF, AMBH, AMCK.
b) Chứng minh rằng H đối xứng với K qua A.
c) Tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông?
Bài 5: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua trung điểm
M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

1

https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem

Bạn xem tại link này nhé

Học tốt!!!!!!

16 tháng 12 2017

mk hướng dẫn câu a) sử dụng tích chất đường trung bình của tam giác 

\(\Rightarrow DE\)SONG SONG VỚI \(BC\)

MÀ \(BF\)CHÍNH LÀ \(BC\)

\(\Rightarrow DE\)SONG SONG \(BF\)

\(\Rightarrow EF\backslash\backslash BD\)

\(\Rightarrow\) tứ giác \(BDEF\)LÀ HÌNH BÌNH HÀNH

16 tháng 12 2017

a. Xét tam giác ABC có: AD=BD; AE=CE

=> DE là đường trung bình của tam giác ABC => DE//BC; DE=1/2BC

• DE//BC nên DE//BF

• DE=1/2BC và BF=1/2BC nên DE=BF

Xét tứ giác BDEF có: DE//BF; DE=BF

=> BDEF là hbh

b. Xét tam giác ABC có: AD=BD; BF=CF

=> DF là đường tb của tam giác ABC

=> DF//AC; DF=1/2AC

Mà AE=1/2AC nên DF=AE

Xét tứ giác ADEF có DF//AE: DF=AE

=> ADEF là hbh

=> DF=AE (1)

Xét tam giác vuông AKC có KE là đường trung tuyến ứng với cạnh huyền

=> KE=1/2AC=AE (2)

Từ (1) và (2) => DF=KE

Xét tứ giác DEFK có KF//DE=> DEFK là hình thang

Xét hình thang DEFK có DF=KE

=> DEFK là hình thang cân