Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M H E O
a) Xét tam giác MAB và MAC có:
AB = AC (tam giác ABC cân tại A)
Góc BAM = CAM (do AM là p/g của góc A)
Cạnh chung AM
=> tam giác MAB = MAC (c - g - c)
b) Tam giác ABC cân tại A có AM là p/g nên đông thời là đường cao
Có BE là đường cao
BE giao với AM tại H
=> H là trực tâm của tam giác ABC => CH vuông góc với AB
c) Xét tam giác AOH và AEH có:
AO = AE
góc OAH = HAE
cạnh chung AH
=> tam giác AOH = AEH (c- g- c)
=> góc AOH = AEH
mà góc AEH = 90 độ
=> góc AOH = 90 độ => AO vuông góc với OH hay AB vuông góc với OH
mà CH vuông góc với AB
=> OH trùng với CH => C; O; H thẳng hàng
a) vì AM là đường phân giác => góc BAM= góc CAM
Xét hai tam giác ABM và ACM có:
AB=AC( do tam giác ABC cân tại A=>AB=AC)
Góc BAM= góc CAM
cạnh AM chung
==>> tam giác ABM= tam giác ACM(c.g.c)
Mình chỉ c/m cho phần a thui,xin lỗi nha
Giải : Xét \(\Delta\)AMB và \(\Delta\)AMC
có AB = AC (gt)
AM : chung
MB = MC (gt)
=> \(\Delta AMB=\Delta AMC\)(c.c.c)
=> \(\widehat{CAM}=\widehat{MAB};\widehat{C}=\widehat{B};\widehat{CMA}=\widehat{AMB}\)(các cặp góc tương ứng)
Mà \(\widehat{CAM}+\widehat{MAB}=40^0\)(gt)
hay \(2.\widehat{CAM}=40^0\)
=> \(\widehat{CAM}=40^0:2\)
=> \(\widehat{CAM}=20^0\)=> \(\widehat{MAB}=20^0\)
Ta có : \(\widehat{CMA}+\widehat{BMA}=180^0\)(kề bù)
hay \(2.\widehat{CAM}=180^0\)
=> \(\widehat{CAM}=180^0:2\)
=> \(\widehat{CAM}=90^0\)
Xét \(\Delta\)AMB có \(\widehat{AMB}=90^0\)=> \(\widehat{C}+\widehat{CAM}=90^0\)(t/c của 1 tam giác)
=> \(\widehat{C}=90^0-\widehat{CAM}=90^0-20^0=70^0\)
Vì \(\widehat{C}=\widehat{B}\)=> \(\widehat{B}=70^0\)
Vậy ....