Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biết câu 2. Muốn chia hết 1995 thì số tận cùng phảl là 0 hoặc 5. Bạn thay n bằng các số từ 0 đến 9. Ko số nào đáp ứng điều kiện cả. Nên ko tồn tại.
a)
Với \(n=1\) .
\(2^n=2^2=4;2n+1=2.2+1=5\).
Với n = 1 thì \(2^n< 2n+1\).
Với \(n=2\)
\(2^n=2^3=8;2n+1=2.3+1=7\)
Với n = 2 thì \(2^n>2n+1\).
Ta sẽ chứng minh bằng quy nạp giả thiết:
Với \(n\ge2\) thì \(2^n>2n+1\). (*)
Với n = 2 (*) đúng .
Giả sử điều cần chứng minh đúng với \(n=k\).
Nghĩa là: \(2^k>2k+1\).
Ta sẽ chứng minh nó cũng đúng với \(n=k+1\).
Nghĩa là: \(2^{k+1}>2\left(k+1\right)+1\).
Thật vậy từ giả thiết quy nạp ta có:
\(2^{k+1}=2.2^k>2.\left(2k+1\right)=4k+2>2\left(k+1\right)+1\) (với \(k\ge2\)).
Vậy điều phải chứng minh đúng với mọi n.
b)
Tương tự như câu a ta kiểm tra được với \(n\ge7\) thì \(2^n>n^2+4n+5\). (*)
Với n = 7.
\(2^7=128\); \(n^2+4n+5=7^2+4.7+5=82\).
Vì \(2^7>7^2+4.7+7\) nên (*) đúng với n = 7.
Giả sử điều cần chứng minh đúng với \(n=k\).
Nghĩa là: \(2^k>k^2+4k+5\).
Ta cần chứng minh nó cũng đúng với \(n=k+1\).
Nghĩa là: \(2^{k+1}>\left(k+1\right)^2+4\left(k+1\right)+5\).
Thật vậy từ giả thiết quy nạp suy ra:
\(2^{k+1}=2.2^k>2\left(k^2+4k+5\right)=2k^2+8k+10\)
\(=\left(k+1\right)^2+4\left(k+1\right)+5+k^2+2k\)\(>\left(k+1\right)^2+4\left(k+1\right)+5\).
Vậy điều cần chứng minh đúng với mọi \(n\ge7\).
TenAnh1 TenAnh1 A = (-4.36, -5.2) A = (-4.36, -5.2) A = (-4.36, -5.2) B = (11, -5.2) B = (11, -5.2) B = (11, -5.2)
a) Bị chặn trên vì \(u_n\le1,\forall n\in\mathbb{N}^{\circledast}\)
b) Bị chặn dưới vì \(u_n\ge2,\forall n\in\mathbb{N}^{\circledast}\)
c) Bị chặn dưới vì \(u_n\ge\sqrt{3},\forall n\in\mathbb{N}^{\circledast}\)
d) Bị chặn vì \(0< u_n\le\dfrac{1}{2},\forall n\in\mathbb{N}^{\circledast}\)
Chẳng nhẽ không được chọn
Đặt \(A=\frac{11}{n-2}.\frac{n}{7}=\frac{11n}{\left(n-2\right).7}=\frac{11n}{7n-14}\)
Để \(\frac{11n}{7n-14}\) có GTN thì 11n phải chia hết cho 7n-14
=>77n chia hết cho 7n-14 (1)
Ta lại có:
7n-14 chia hết cho 7n-14
=> 11(7n-14) chia hết cho 7n-14
=> 77n - 154 chia hết cho 7n-14 (2)
Trừ (1) cho (2) ta đc:
(77n) - (77n - 154) chia hết cho 7n-14
=> 154 chia hết cho 7n-14
\(\Rightarrow7n-14\inƯ\left(154\right)\)
\(\Rightarrow7n-14\in\left\{1;-1;2;-2;7;-7;11;-11\right\}\)
\(\Rightarrow7n\in\left\{15;13;16;12;21;7;25;3\right\}\)
\(\Rightarrow n\in\left\{3;2\right\}\)
Vậy n = 3 hoặc n = 2
Tốn công lắm nha !