K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADH vuông tại H và ΔCBK vuông tại K có 

AD=BC

\(\widehat{ADH}=\widehat{CBK}\)

Do đó: ΔADH=ΔCBK

Suy ra:AH=CK

Xét tứ giác AHCK có

AH//CK

AH=CK

Do đó: AHCK là hình bình hành

14 tháng 12 2023

Bài 3:

a: Ta có: AD+DB=AB

AE+EC=AC

mà DB=EC và AB=AC

nên AD=AE

Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

nên DE//BC

Xét tứ giác BDEC có DE//BC

nên BDEC là hình thang

Hình thang BDEC có \(\widehat{DBC}=\widehat{ECB}\)

nên BDEC là hình thang cân

b: Để BD=DE=EC thì BD=DE và DE=EC

BD=DE thì ΔDBE cân tại D

=>\(\widehat{DBE}=\widehat{DEB}\)

mà \(\widehat{DEB}=\widehat{EBC}\)(hai góc so le trong, DE//BC)

nên \(\widehat{DBE}=\widehat{EBC}\)

=>\(\widehat{ABE}=\widehat{EBC}\)

=>BE là phân giác của góc ABC

=>E là chân đường phân giác kẻ từ B xuống AC

Xét ΔEDC có ED=EC

nên ΔEDC cân tại E

=>\(\widehat{EDC}=\widehat{ECD}\)

mà \(\widehat{EDC}=\widehat{DCB}\)(hai góc so le trong, DE//BC)

nên \(\widehat{ECD}=\widehat{DCB}\)

=>\(\widehat{ACD}=\widehat{BCD}\)

=>CD là phân giác của góc ACB

=>D là chân đường phân giác từ C kẻ xuống AB

Bài 2:

a: Ta có: ABCD là hình bình hành

=>AB//CD và AB=CD(1)

Ta có: M là trung điểm của AB

=>\(AM=MB=\dfrac{AB}{2}\left(2\right)\)

Ta có: N là trung điểm của CD

=>\(NC=ND=\dfrac{CD}{2}\left(3\right)\)

Từ (1),(2),(3) suy ra AM=MB=NC=ND

Xét tứ giác AMCN có 

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

b: Ta có AMCN là hình bình hành

=>AN//CM

Xét ΔDFC có

N là trung điểm của DC

NE//FC

Do đó: E là trung điểm của DF

=>DE=EF(4)

Xét ΔABE có

M là trung điểm của BA

MF//AE

Do đó: F là trung điểm của BE

=>BF=FE(5)

Từ (4) và (5) suy ra BF=FE=ED

26 tháng 8 2021

Xét tg DKC và tg BHA có H=K =90 đỘ

                                         DC=AB( hbh ABCD)

                                         ABH=CBK( hbh ABCD, AB//DC)

Suy ra tg DKC=tg BHA( ch-gn)

=> CK=AH( 2 cạnh t/ư)

Ta có : AH vg góc DB

           CK vg góc DB

=> CK//AH

Xét tg AKCH có CK//AH(cmt)

                          CK=AH( cmt)

=> AKCH là hbh( dấu hiệu 3)

 

 

a: Xét ΔAHD vuông tại H và ΔCKB vuông tại K có

AD=CB

\(\widehat{ADH}=\widehat{CBK}\)

Do đó: ΔAHD=ΔCKB

Suy ra: AH=CK

Xét tứ giác AHCK có 

AH//CK

AH=CK

Do đó: AHCK là hình bình hành

b: Ta có: AHCK là hình bình hành

nên Hai đường chéo AC và HK cắt nhau tại trung điểm của mỗi đường

mà O là trung điểm của HK

nên O là trung điểm của AC

hay A,O,C thẳng hàng

9 tháng 12 2018

Ta chứng minh AH//CK, AH = CK (DAHD = DCKB) Þ AHCK là hình bình hành (cặp cạnh đối song song và bằng nhau)

29 tháng 8 2021

ABCD là hbh=> AD//BC=> góc DAC= góc ACB và AO=OC

Xét tam giác AOE và tam giác COF ta có

góc AOE = góc COF (2 góc đối xừng)

AO=OC

góc DAC= góc ACB

=> tam giác AOE = tam giác COF=> OE=OF

CHứng minh tương tự ta có tam giác AOK= tam giác COH=> OK=OH

Xét tứ giác EHFK có EH và FK là 2 đường chéo cắt nhau tại O

lại có OE=OF
          OH=OK

=> EHFk là hình bình hành (do 2 đường chéo cắt nhau tại trung điểm mỗi đường)

NM
9 tháng 9 2021

undefined

ta có : hai tam giác ABD bằng CND ( do ABCD là hình bình hành nên )

\(S_{ABD}=S_{CBD}\Leftrightarrow\frac{1}{2}AH.BD=\frac{1}{2}CK.BD\Rightarrow AH=CK\)

mà AH song song với CK  (do cùng vuông góc với BD) 

nên AHCK là hình bình hành

9 tháng 9 2021

  •  

Giải thích các bước giải:

Ta có tứ giác ABCD là hình bình hành 

=>AD// và =BC

AD//BC,cát tuyến BD

=>∠ADH=∠KBC(so le trong)

XétΔAHD và ΔBKC

·∠AHD=∠BKC=90 độ

·∠ADH=∠KBC

.AD=BC

=>ΔAHD = ΔBKC(ch+gn)

b)=>AH=CK(2 cạnh tương ứng của 2Δ=nhau) (1)

ta có AH⊥BD

CK⊥BC

=>AH//CK (2)

Từ (1) và (2) =>đpcm (theo tc đoạn chắn)

~ Chúc bn Thành Công trong HT ạ ~ 

1 tháng 1 2017

Ta có DAOK = DCOH Þ OK =OH, DDOE = DBOF Þ OE = OF Þ EHFK là hình bình hành

2 tháng 8 2021

Ở đâu vậy bạn