K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0
6 tháng 12 2017

Câu c.

Gọi K là trung điểm của BH

Chỉ ra K là trực tâm của tam giác BMI

Chứng minh MK//EI

Chứng minh M là trung điểm của BE (t.c đường trung bình)

24 tháng 12 2017

a) Cm: CO = CD

Xét tam giác HDA vuông tại H ( CH vuông góc AB )
* góc HDA + góc HAD = 90 độ 
Mà góc HDA = góc CDO ( đối đỉnh )
=> góc CDO + góc HAD = 90 độ
=> góc CDO + góc BAO = 90 độ

Xét tam giác COD vuông tại C ( CA là tiếp tuyến)
* góc COA + góc CAO = 90 độ
=> góc COD + góc CAO = 90 độ 

Ta có : góc COD + góc CAO = 90 độ (cmt)
            góc CDO + góc BAO = 90 độ (cmt)
Mà góc CAO = góc BAO (AO là tia phân giác ; tính chất của 2 tiếp tuyến cắt nhau)
=> góc COD = góc CDO

Xét tam giác COD có:
* góc COD = góc CDO (cmt)
=> tam giác COD cân tại C
=> CO = CD (tính chất)

b) Cm: I là trung điểm của OH

Trong đường tròn tâm O:
* O là tâm
* CE là dây 
* M là trung điểm của CE
=> OM vuông góc với CE ( hệ quả của tính chất đường kính qua trung điểm dây) (1**)

Xét tứ giác OMHB có:
* góc MHB = 90 độ ( CH vuông góc AB )
* góc OBH = 90 độ ( AB là tiếp tuyến )
* góc OMH = 90 độ ( OM vuông góc CE )
=> tứ giác OMHB là hình chữ nhật (2**)
=> OB = MH

Ta có: OB vuông góc AB ( BA là tiếp tuyến)
           MH vuông góc AB ( CH vuông góc AB )
=> OB // MH

Xét tam giác OIB và tam giác HIM có:
* góc IBO = góc IMH (OB // MH)
* OB = HM (cmt)
* góc BOI = góc MHI (OB // MH)
=> tam giác OIB = tam giác HIM (g-c-g)
=> OI = HI (tính chất)
Mà I nằm giữa O,H
=> I là trung điểm OH 

P/S:

(1**): tính chất này bạn xem lại SGK, mình nhớ không rõ tên gọi.

(2**): từ đây có thể suy ra trung điểm (tính chất 2 đường chéo cắt nhau tại trung điểm mỗi đường), do không chắc lắm nên mình mới xét tam giác.