Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)
=> a = b = c
b)
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\)
=> x = y = z (theo a)
Thay x = y = z vào biểu thức, ta có:
\(M=\dfrac{x^{333}.x^{666}}{x^{999}}=1\)
c)
\(ac=b^2\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)
\(ab=c^2\Rightarrow\dfrac{b}{c}=\dfrac{c}{a}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\Rightarrow a=b=c\)
Thay a = b = c vào biểu thức, ta có:
\(M=\dfrac{a^{333}}{a^{111}.a^{222}}=1\)
a) ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{b}=\dfrac{4c}{4d}=\dfrac{a+4c}{b+4d}\left(đpcm\right)\)
b;c;d tương tự hết
b: a/b=c/d
nên 3a/3b=2c/2d
=>a/b=c/d=(3a+2c)/(3b+2d)
c: a/c=b/d nên a/c=2b/2d=(a-2b)/(c-2d)
d: a/c=b/d
nên 5a/5c=2b/2d
=>a/c=b/d=(5a-2b)/(5c-2d)
a: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{k}{k-1}\)
\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{k}{k-1}\)
Do đó: \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
b: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\dfrac{b^2}{d^2}\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)
DO đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
Đặt: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=t\) ta có:
\(\dfrac{2a^4}{2b^4}=\dfrac{3b^4}{3c^4}=\dfrac{4c^4}{4d^4}=\dfrac{5d^4}{5e^4}=t^4\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(t^4=\dfrac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}\)
Mặt khác: \(\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}.\dfrac{d}{e}=\dfrac{a}{e}=t.t.t.t=t^4\)
Ta có đpcm
Giải:
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
\(\Rightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\left(đpcm\right)\)
Vậy...
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(\left\{{}\begin{matrix}a=b.k\\c=d.k\end{matrix}\right.\) (1)
Thay (1) vào:
\(\dfrac{a+b}{a-b}=\dfrac{b.k+b}{b.k-b}=\dfrac{b.\left(k+1\right)}{b.\left(k-1\right)}=\dfrac{k+1}{k-1}\) (2)
\(\dfrac{c+d}{c-d}=\dfrac{d.k+d}{d.k-d}=\dfrac{d.\left(k+1\right)}{d.\left(k-1\right)}=\dfrac{k+1}{k-1}\) (3)
Từ (2) và (3) =>\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}=\dfrac{k+1}{k-1}\)
Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=k\)(k<>0)
=>\(\left\{{}\begin{matrix}d=a\cdot k\\c=d\cdot k=a\cdot k\cdot k=ak^2\\b=ck=ak^3\\a=bk=ak^4\end{matrix}\right.\)
\(a=ak^4\)
=>\(ak^4-a=0\)
=>\(a\left(k^4-1\right)=0\)
=>\(k^4-1=0\)
=>\(\left[{}\begin{matrix}k=1\\k=-1\end{matrix}\right.\)
\(M=\dfrac{3a+b}{5b-d}+\dfrac{2b+3c}{2d-b}\)
\(=\dfrac{3\cdot ak^4+ak^3}{5\cdot ak^3-ak}+\dfrac{2\cdot ak^3+3\cdot ak^2}{2\cdot ak-ak^3}\)
\(=\dfrac{ak^3\left(3k+1\right)}{ak\left(5k^2-1\right)}+\dfrac{ak^2\left(2k+3\right)}{ak\left(2-k^2\right)}\)
\(=\dfrac{k^2\left(3k+1\right)}{5k^2-1}+\dfrac{k\left(2k+3\right)}{2-k^2}\)
TH1: k=1
=>\(M=\dfrac{1^2\left(3\cdot1+1\right)}{5\cdot1^2-1}+\dfrac{1\left(2\cdot1+3\right)}{2-1^2}=\dfrac{4}{4}+\dfrac{5}{1}=6\)
TH2: k=-1
=>\(M=\dfrac{\left(-1\right)^2\cdot\left(-3+1\right)}{5\cdot\left(-1\right)^2-1}+\dfrac{\left(-1\right)\left(2\cdot\left(-1\right)+3\right)}{2-\left(-1\right)^2}\)
\(=\dfrac{-2}{4}+\dfrac{1}{1}=-\dfrac{1}{2}+1=\dfrac{1}{2}\)
cíu tuii
ghép câu thành có nghĩa: H/ồ/g/.../B/a/o/n