Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2: Restore : a;b;c không âm thỏa \(a^2+b^2+c^2=1\)
Tìm Min & Max của \(M=\left(a+b+c\right)^3+a\left(2bc-1\right)+b\left(2ac-1\right)+c\left(2ab-1\right)\)
Bài 4: Tương đương giống hôm nọ thôi : V
Bài 5 : Thiếu ĐK thì vứt luôn : V
Bài 7: Tương đương
( Hoặc có thể AM-GM khử căn , sau đó đổi \(\left(a;b;c\right)\rightarrow\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\) rồi áp dụng bổ đề vasile)
Bài 8 : Đây là 1 dạng của BĐT hoán vị
@Ace Legona @Akai Haruma @Hung nguyen @Hà Nam Phan Đình @Neet
Vì 3 ≤ x ≤ 7 => x - 3 ≥ 0; 7 - x ≥ 0
=> C ≥ 0
Dấu = xảy ra khi và chỉ khi x = 3 hoặc x = 7
C = (x - 3)(7 - x) ≤ \(\dfrac{1}{4}\)(x - 3 + 7 - x)2 = \(\dfrac{1}{4}\).42 = 4
Dấu "=" xảy ra <=> x - 3 = 7 - x <=> x = 5
\(G=\left(x^2+\sqrt[3]{3}\right)+\left(\dfrac{2}{x^3}+\dfrac{2}{\sqrt{3}}+\dfrac{2}{\sqrt{3}}\right)-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{x^2.\sqrt[3]{3}}+3\sqrt[3]{\dfrac{2}{x^3}.\dfrac{2}{\sqrt{3}}.\dfrac{2}{\sqrt{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt[6]{3}.x+\dfrac{6}{\sqrt[3]{3}x}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{2\sqrt[6]{3}.x.\dfrac{6}{\sqrt[3]{3}x}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt{\dfrac{12\sqrt[6]{3}}{\sqrt[3]{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\)
Dấu "=" xảy ra khi và chỉ khi \(x=\sqrt[6]{3}\)
Hok nhanh phết, chưa j đã đến phần toạ độ vecto r
1/ \(\overrightarrow{MB}=\left(x_B-x_M;y_B-y_M\right)=\left(2-x_M;3-y_M\right)\)
\(\Rightarrow2\overrightarrow{MB}=\left(4-2x_M;6-2y_M\right)\)
\(\overrightarrow{3MC}=\left(3x_C-3x_M;3y_C-3y_M\right)=\left(-3-3x_M;6-3y_M\right)\)
\(\Rightarrow2\overrightarrow{MB}+3\overrightarrow{MC}=\left(4-2x_M-3-3x_M;6-2y_M+6-3y_M\right)=0\)
\(\Leftrightarrow\left(1-5x_M;12-5y_M\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-5x_M=0\\12-5y_M=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_M=\frac{1}{5}\\y_M=\frac{12}{5}\end{matrix}\right.\Rightarrow M\left(\frac{1}{5};\frac{12}{5}\right)\)
2/ \(\overrightarrow{m}=2\left(1;2\right)+3\left(3;4\right)=\left(2+9;4+12\right)=\left(11;16\right)\)
3/ \(\overrightarrow{AB}=\left(x_B-x_A;y_B-y_A\right)=\left(-5-3;4+2\right)=\left(-8;6\right)\)
\(\overrightarrow{AC}=\left(x_C-x_A;y_C-y_A\right)=\left(\frac{1}{3}-3;0+2\right)=\left(-\frac{8}{3};2\right)\)
\(\Rightarrow x=\frac{\overrightarrow{AB}}{\overrightarrow{AC}}=\frac{\left(-8;6\right)}{\left(-\frac{8}{3};2\right)}=3\)
Câu 4 tương tự
Câu 5 vt lại đề bài nhé bn, nghe nó vô lý sao á, m,n ở đâu ra vậy, cả A,B,C nx
Câu 1 :
Ta có :
\(\Delta=\left(m-1\right)^2-4.\left(2m-7\right)\)
\(=m^2-2m+1-8m+28\)
\(=m^2-10m+27>0\)
Do đó pt luôn có 2 nghiệm phân biệt
Tập M có độ dài \(\left(2m+5\right)-\left(2m-1\right)=6\)
Tương tự tập N có độ dài bằng 6
\(\Rightarrow\) Hợp của 2 tập là đoạn có độ dài bằng 10 khi và chỉ khi giao của 2 tập có độ dài bằng 2
\(\Leftrightarrow\left[{}\begin{matrix}2m+5-\left(m+1\right)=2\\m+7-\left(2m-1\right)=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=6\end{matrix}\right.\)
a: f(-x)=2||-x|-2|-|-x|=2||x|-2|-|x|=f(x)
=>f(x) là hàm số chẵn
b: Đặt |x|=a
Pt sẽ là 2|a-2|-a=m
=>|2a-4|=a+m
=>\(\left\{{}\begin{matrix}a>=-m\\4a^2-16a+16-a^2-2am-m^2=0\end{matrix}\right.\)
\(\Leftrightarrow3a^2-a\left(16+2m\right)+16-m^2=0\)(1)
Để phương trình ban đầu có 4 nghiệm pb thì pt (1) có hai nghiệm dương
=>\(\left\{{}\begin{matrix}\left(16+2m\right)^2-4\cdot3\cdot\left(16-m^2\right)>0\\\dfrac{16+2m}{3}>0\\16-m^2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4m^2+64m+256-192+12m^2>0\\-4< =m< =4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}16m^2+64m+64>0\\-4< =m< =4\end{matrix}\right.\Leftrightarrow m\in\left[-4;4\right]\backslash\left\{-2\right\}\)