Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dăm ba cái toán 7
1 ) a ) Ta có f(x) = 2x2 - 3
=> f(-1) = 2. ( -1 ) . 2 - 3 = -7
b ) Ta có : f ( x ) = 2x2 - 3
=> f ( 1/2 ) = 2 . ( 1/2 ) . 2 - 3 = -1
2 ) Tổng số tỉ lệ của 3 loại : 3 + 5 + 2 = 10
Số HS giỏi : 40 : 10 x 3 = 12
Số HS khá : 40 : 10 x 5 = 20
Số HS trung bình : 40 : 10 x 2 = 8
4 ) tg là tam giác nha
1) Xét tgMAB và tgMEC , có :
góc M1 = góc M2 ( 2 góc đối đỉnh )
AM = EM ( gt )
MB = MC ( M là trung điểm của BC )
Do đó : tgMAB = tg MEC ( c - g - c )
2 ) Xét tgACM và tgBEM , có :
AM = EM ( gt )
BM = CM ( M là trung điểm của BC )
góc M3 = góc M4 ( 2 góc đối đỉnh )
Do đó : tg ACM = tg BEM ( c - g - c )
=> góc C1 = góc B1 ( 2 góc tương ứng )
=> AC // BE ( có 2 góc so le trong bằng nhau ( C1 = B1 ) )
3 ) Xét tgBMI và tgKMC , có :
BI = CK ( gt )
BM = CM ( M là trung điểm của BC )
gócB2 = gócC2 ( 2 góc tương ứng của tgMAB = tgMEC )
Do đó : tgBMI = tgKMC ( c - g - c )
mà BC là một đường thẳng và đi qua M( M là trung điểm của BC )
=> IK cũng là một đường thẳng và đi qua M
Do đó : 3 điểm I , M , K thẳng hàng
1 ) a ) Ta có f(x) = 2x2 - 3
=> f(-1) = 2. ( -1 ) . 2 - 3 = -7
b ) Ta có : f ( x ) = 2x2 - 3
=> f ( 1/2 ) = 2 . ( 1/2 ) . 2 - 3 = -1
2 ) Tổng số tỉ lệ của 3 loại : 3 + 5 + 2 = 10
Số HS giỏi : 40 : 10 x 3 = 12
Số HS khá : 40 : 10 x 5 = 20
Số HS trung bình : 40 : 10 x 2 = 8
4 ) tg là tam giác nha
1) Xét tgMAB và tgMEC , có :
góc M1 = góc M2 ( 2 góc đối đỉnh )
AM = EM ( gt )
MB = MC ( M là trung điểm của BC )
Do đó : tgMAB = tg MEC ( c - g - c )
2 ) Xét tgACM và tgBEM , có :
AM = EM ( gt )
BM = CM ( M là trung điểm của BC )
góc M3 = góc M4 ( 2 góc đối đỉnh )
Do đó : tg ACM = tg BEM ( c - g - c )
=> góc C1 = góc B1 ( 2 góc tương ứng )
=> AC // BE ( có 2 góc so le trong bằng nhau ( C1 = B1 ) )
3 ) Xét tgBMI và tgKMC , có :
BI = CK ( gt )
BM = CM ( M là trung điểm của BC )
gócB2 = gócC2 ( 2 góc tương ứng của tgMAB = tgMEC )
Do đó : tgBMI = tgKMC ( c - g - c )
mà BC là một đường thẳng và đi qua M( M là trung điểm của BC )
=> IK cũng là một đường thẳng và đi qua M
Do đó : 3 điểm I , M , K thẳng hàng
Lời giải:
$a+b+c=0\Rightarrow a+b=-c$
Ta có:
$a^3+b^3+c^3=(a+b)^3-3a^2b-3ab^2+c^3$
$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=(-c)^3+3abc+c^3=3abc$ chứ không phải bằng $0$ nhé.
\(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c};c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\\ \Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\\ \Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{c^3+b^3+d^3}\left(1\right)\\ \text{Đặt }\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=k\\ \Rightarrow a=bk;b=ck;c=dk\\ \Rightarrow a=bk=ck^2=dk^3\\ \Rightarrow\dfrac{a}{d}=k^3\\ \text{Mà }\dfrac{a}{b}=k\Rightarrow\dfrac{a^3}{b^3}=k^3\\ \Rightarrow\dfrac{a}{d}=\dfrac{a^3}{b^3}\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\)
Cc