Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Vịtt Tên Hiền - Toán lớp 8 | Học trực tuyến nhớ tìm kiếm trước khi hỏi
C1:Áp dụng Bất đẳng thức AM-GM ta có:
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1^2}{a+b}+\dfrac{1^2}{b+c}+\dfrac{1^2}{c+a}\ge\)
\(\ge\dfrac{\left(1+1+1\right)^2}{a+b+b+c+c+a}=\dfrac{9}{2\left(a+b+c\right)}\)
\(\Rightarrow A=\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=\left(a+b+c\right).\dfrac{9}{2\left(a+b+c\right)}=\dfrac{9}{2}\)Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
C2: Khai triển
\(A=\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=\)
\(=1+\dfrac{c}{a+b}+1+\dfrac{a}{b+c}+1+\dfrac{b}{c+a}\) (bn tự khai triển đầy đủ nha)
Áp dụng BĐT Nesbitt ta có:
\(A=\left(1+1+1\right)+\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)\ge\)
\(\left(1+1+1\right)+\dfrac{3}{2}=\dfrac{9}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
\(\dfrac{1}{a}< \dfrac{1}{b}\)
\(\Leftrightarrow ab\cdot\dfrac{1}{a}< ab\cdot\dfrac{1}{b}\)(nhân cả hai vế với ab>0)
\(\Leftrightarrow b< a\)(luôn đúng)
=>đpcm
Áp dụng BĐT AM - GM, ta có:
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(=1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+1+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}+1\)
\(=3+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\)
\(\ge3+2+2+2=9\)
Dấu "=" xảy ra khi a = b = c
Áp dụng bất đẳng thức \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\) có:
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{9\left(a+b+c\right)}{\left(a+b+c\right)}=9\)
Dấu " = " khi a = b = c
Bài 1:
Áp dụng BĐt cauchy dạng phân thức:
\(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\ge\dfrac{4}{3\left(x+y\right)}\)
\(\Rightarrow\left(3x+3y\right)\left(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\right)\ge\left(3x+3y\right).\dfrac{4}{3x+3y}=4\)
dấu = xảy ra khi 2x+y=x+2y <=> x=y
Bài 2:
ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{4^2}{a+b+c+d}=\dfrac{16}{a+b+c+d}\)(theo BĐt cauchy-schwarz)
\(\Rightarrow\dfrac{1}{a+b+c+d}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)\)
Áp dụng BĐT trên vào bài toán ta có:
\(A=\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{c}\right)\)\(A\le\dfrac{1}{16}.4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
......
dấu = xảy ra khi a=b=c
Bài 2:
Áp dụng BĐT cauchy cho 2 số dương:
\(a^2+1\ge2a\)
\(\Leftrightarrow\dfrac{a}{a^2+1}\le\dfrac{a}{2a}=\dfrac{1}{2}\)
thiết lập tương tự:\(\dfrac{b}{b^2+1}\le\dfrac{1}{2};\dfrac{c}{c^2+1}\le\dfrac{1}{2}\)
cả 2 vế các BĐT đều dương ,cộng vế với vế,ta có dpcm
dấu = xảy ra khi a=b=c=1
\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\)
\(\Leftrightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}\)
\(\Leftrightarrow\frac{1}{1+a}\ge\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\left(1\right)\)
Tương tự:
\(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\left(2\right)\)
\(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\left(3\right)\)
Nhân (1),(2) và (3) theo vế:
\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Leftrightarrow1\ge8abc\Rightarrow abc\le\frac{1}{8}\)
Dấu "=" xảy ra khi a=b=c=1/2
Sửa đề: Chứng minh \(abc\le\dfrac{1}{8}\)
Ta có
\(\dfrac{1}{1+a}=\left(1-\dfrac{1}{1+b}\right)+\left(1-\dfrac{1}{1+c}\right)\)
\(=\dfrac{b}{1+b}+\dfrac{c}{1+c}\ge2\sqrt{\dfrac{bc}{\left(1+b\right)\left(1+c\right)}}\) (1)
Tương tự \(\dfrac{1}{1+b}\ge2\sqrt{\dfrac{ca}{\left(1+c\right)\left(1+a\right)}}\) (2)
và \(\dfrac{1}{1+c}\ge2\sqrt{\dfrac{ab}{\left(1+a\right)\left(1+b\right)}}\) (3)
Nhân (1), (2), (3) với nhau:
\(\dfrac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\dfrac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Rightarrow abc\le\dfrac{1}{8}\)
Đẳng thức xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{2}\)
2a)
Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2a+b+c}=\dfrac{1}{a+b+a+c}\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\\\dfrac{1}{a+2b+c}=\dfrac{1}{a+b+b+c}\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\\\dfrac{1}{a+b+2c}=\dfrac{1}{a+c+b+c}\le\dfrac{1}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\end{matrix}\right.\)
\(\Rightarrow VT\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+\dfrac{1}{4}\left(\dfrac{1}{b+c}+\dfrac{1}{a+b}\right)+\dfrac{1}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\)
\(\Rightarrow VT\le\dfrac{1}{4\left(a+b\right)}+\dfrac{1}{4\left(a+c\right)}+\dfrac{1}{4\left(b+c\right)}+\dfrac{1}{4\left(a+b\right)}+\dfrac{1}{4\left(a+c\right)}+\dfrac{1}{4\left(b+c\right)}\)
\(\Rightarrow VT\le\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\)
Chứng minh rằng \(\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\Leftrightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\\\dfrac{1}{b+c}\le\dfrac{1}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\\\dfrac{1}{c+a}\le\dfrac{1}{4}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{4}\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\right)\)
\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) ( đpcm )
Vì \(\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Mà \(VT\le\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\)
\(\Rightarrow\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)( đpcm )
Dấu " = " xảy ra khi \(a=b=c\)
2b)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}1+a^2\ge2\sqrt{a^2}=2a\\1+b^2\ge2\sqrt{b^2}=2b\\1+c^2\ge2\sqrt{c^2}=2c\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{1+a^2}\le\dfrac{a}{2a}=\dfrac{1}{2}\\\dfrac{b}{1+b^2}\le\dfrac{b}{2b}=\dfrac{1}{2}\\\dfrac{c}{1+c^2}\le\dfrac{c}{2c}=\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}\le\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c=1\)
Bài 1)
Nháp : nhìn nhanh ta thấy nên áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
Giải
Vì x,y > 0 =) 2x + y > 0 , x + 2y > 0
Áp dụng BĐT cauchy dạng phân thức cho hai bộ số không âm \(\dfrac{1}{2x+y}\)và\(\dfrac{1}{x+2y}\)
\(\Rightarrow\dfrac{1}{x+2y}+\dfrac{1}{2x+y}\ge\dfrac{4}{x+2y+2x+y}=\dfrac{4}{3\left(x+y\right)}\)
\(\Rightarrow\left(3x+3y\right)\left(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\right)\ge\left(3x+3y\right).\dfrac{4}{3\left(x+y\right)}=4\)
Dấu '' = "xảy ra khi và chỉ khi x + 2y = y + 2x (=) x=y
Từ (a-1)(b-1)(c-1)>0 (*)
<=>(ab-b-a+1)(c-1)>0
<=> abc-ab-bc+b-ac+a+c-1>0
<=> a+b+c-ab-ac-bc>0
<=> a+b+c-\(\dfrac{abc}{c}-\dfrac{abc}{b}-\dfrac{abc}{a}\)>0
<=> a+b+c - \(\dfrac{1}{c}-\dfrac{1}{b}-\dfrac{1}{a}>0\)
<=> \(a+b+c>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ( 1)
(1) đúng => (*) đúng
( 1 + \(\dfrac{1}{a}\))( 1 + \(\dfrac{1}{b}\)) ≥ 9
Ta có : \(\left(1+\dfrac{a+b}{a}\right)\left(1+\dfrac{a+b}{b}\right)\)
= \(\left(2+\dfrac{b}{a}\right)\left(2+\dfrac{a}{b}\right)\)
= 4 + 2\(\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+1\)
Áp dụng BĐT : \(\dfrac{x}{y}+\dfrac{y}{x}\) ≥ 2 ( x > 0 , y > 0)
⇒4+ 2 \(\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+1\) ≥ 4 + 2.2 + 1 = 9
⇒ ĐPCM