Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\Delta ABH\) vuông tại H có:
BH2 =AB2 -AH2 =132 -122 =25( ĐL Pytago)
=> BH=5 cm
BC=BH+HC=5+16=21 cm
\(\Delta AHC\) vuông tại H có:
AH2 + HC2 =AC2 ( đl Pytago)
=> AC2 =122 + 162 =20 cm
b) \(\Delta AHB\) vuông tại H có: AB2 = AH2 +BH2 ( ĐL Pytago)
=> BH2 =AB2 - AH2 =132 - 122 =25
=> BH=5 cm
BC= BH+HC=5+16=21 cm
\(\Delta AHC\) vuông tại H có: AC2 = AH2 +HC2 ( đL Pytago)
=> AC2 = 122 + 162 =400
=> AC= 20 cm
từ đề bài, ta có:
AB = BC >AC
\(\Rightarrow\widehat{C}=\widehat{A}>\widehat{B}\)
Xét ΔABC có AB=BC>AC(5cm=5cm>3cm)
mà góc đối diện với cạnh AB là \(\widehat{C}\)
góc đối diện với cạnh BC là \(\widehat{A}\)
góc đối diện với cạnh AC là \(\widehat{B}\)
nên \(\widehat{C}=\widehat{A}>\widehat{B}\)
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
Hình bn tự vẽ nhé!!!!!
a. Ta có :
52 = 25
32 + 42 = 25
=> 52 = 32 + 42 hay BC2 = AB2 + AC2
=> ΔABCΔABC vuông tại A
b.Xét ΔABDΔABD và ΔEBDΔEBD ,có :
BD : cạnh chung
ABDˆ=EBDˆABD^=EBD^ ( BD là tia phân giác của góc B )
BADˆ=BEDˆ=900BAD^=BED^=900
=> ΔABD=ΔEBDΔABD=ΔEBD ( cạnh huyền - góc nhọn )
=> DA = DE
c.Xét ΔADFΔADF và ΔEDCΔEDC ,có :
DA = DE ( c/m b )
FADˆ=DECˆ=900FAD^=DEC^=900
ADFˆ=EDCˆADF^=EDC^ ( 2 góc đối đỉnh )
=> ΔADF=ΔEDCΔADF=ΔEDC ( g.c.g hoặc cạnh góc vuông - góc nhọn kề )
=> DF = DC (1)
mà DC > DE (2) ( trong tam giác vuông cạnh huyền lớn hơn cạnh góc vuông )
Từ (1) và (2) => DF > DE (đpcm )
a: Xét ΔABC có AB<AC<BC
mà \(\widehat{C};\widehat{B};\widehat{A}\) lần lượt là góc đối diện của các cạnh AB,AC,BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
b: Vì \(\widehat{C}< \widehat{B}< \widehat{A}\)
nên \(\widehat{A}\) là góc lớn nhất trong ΔABC