Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b. Giả sử góc ngoài tại đỉnh B của tam giác ABC là ∠(xBC). Ta có:
∠(xBC) + ∠(ABD) = 180o ⇒ ∠(xBC) = 180o - ∠(ABD) (0.5 điểm)
∠(DEC) + ∠(AED) = 180o ⇒ ∠(DEC) = 180o - ∠(AED) (0.5 điểm)
Mà ∠(ABD) = ∠(AED) ( hai góc tương ứng vì ΔABD = ΔAED)(0.5 điểm)
Từ đó suy ra ∠(xBC) = ∠(DEC) (0.5 điểm)
a) Xét ∆ADE và ∆ADB ta có:
AE = AB (gt)
(AD là tia phân giác của )
AD (cạnh chung)
Do đó ∆ADE = ∆ADB (c.g.c)
Mà là góc ngoài của tam giác ADE
Nên
b) Ta có là góc ngoài của tam giác ACD)
Mà (câu a)
∆CDE có DC > ED (định lí cạnh đối diện với góc lớn hơn)
Mà ED = BD (∆ADE = ∆ADB). Do vậy DC>BD.
c. Vì ΔABD = ΔAED ⇒ BD = DE (hai cạnh tương ứng)(0.5 điểm)
Vì ∠(xBC) là góc ngoài của tam giác ABC nên ∠(xBC) > ∠C (0.5 điểm)
Mà ∠(xBC) = ∠(DEC) ̂⇒ ∠(DEC) > ∠C (0.5 điểm)
Trong tam giác ΔDEC có ∠(DEC) > ∠C ⇒ DC > DE mà DE = BD (0.5 điểm)
Suy ra DC > BD (0.5 điểm)
1:
a: Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
mà AB<AC
nên BD<CD
b: AB<AC
=>góc B>góc C
góc ADB=góc C+góc CAD
góc ADC=góc B+góc BAD
mà góc C<góc B và góc CAD=góc BAD
nên góc ADB<góc ADC