Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A có GTLN <=> 8n + 193 có GTLN và 4n + 3 có GTNN <=> ....
b) A có GTNN <=> 8n + 193 có GTNN và 4n + 3 có GTLN <=> ...
a: Để A là phân số thì 3n+3<>0
=>n<>-1
b: \(A=\dfrac{12n}{3\left(n+1\right)}=\dfrac{4n}{n+1}\)
Để A là số nguyên thì 4n+4-4 chia hết cho n+1
=>\(n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{0;-2;1;-3;3;-5\right\}\)
a: A là phân số khi 3n+3<>0
=>n<>-1
b: \(A=\dfrac{12}{3\left(n+1\right)}=\dfrac{4}{n+1}\)
Để A nguyên thì \(n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{0;-2;1;-3;3;-5\right\}\)
Ta có : \(\frac{5n+7}{n-3}=\frac{5}{3}\)
\(\Leftrightarrow\left(5n+7\right)3=5\left(n-3\right)\)
\(\Leftrightarrow15n+21=5n-15\)
\(\Leftrightarrow15n-5x=-15-21\)
\(\Leftrightarrow10n=-36\)
\(\Leftrightarrow n=-\frac{18}{5}\)
\(b,A\inℕ\Rightarrow5n+7⋮n-3\)
\(\Rightarrow5n-15+22⋮n-3\)
\(\Rightarrow5(n-3)+22⋮n-3\)
\(\Rightarrow22⋮n-3\)
\(\Rightarrow n-3\inƯ(22)=[\pm1,\pm2,\pm11,\pm22]\)
bạn tự vẽ bảng
Lời giải:
a. Để $A$ là 1 phân số thì $n+1\neq 0$ hay $n\neq -1$
b.
$A=\frac{4(n+1)-4}{n+1}=4-\frac{4}{n+1}$
Để $A$ nguyên thì $\frac{4}{n+1}$ nguyên.
Với $n$ nguyên, để điều trên xảy ra thì $4\vdots n+1$
$\Rightarrow n+1\in\left\{\pm 1; \pm 2;\pm 4\right\}$
$\Rightarrow n\in\left\{0; -2; 1; -3; -5; 3\right\}$
c.
$A=4-\frac{4}{n+1}$. Để $A$ nhỏ nhất thì $\frac{4}{n+1}$ lớn nhất. Với $n$ tự nhiên thì điều này xảy ra khi $n+1$ là số dương nhỏ nhất.
Với $n$ tự nhiên thì hiển nhiên $n+1$ nhỏ nhất bằng $1$ khi $n=0$
$A_{\min}=4-\frac{4}{0+1}=0$