Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bất đẳng thức cần chứng minh tương đương với:
\(\dfrac{a}{a+3\sqrt{bc}}+\dfrac{b}{b+3\sqrt{ca}}+\dfrac{c}{c+3\sqrt{ab}}\)
Ta áp dụng bất đẳng thức Cô si dạng \(2\sqrt{xy}\le x+y\) cho các căn thức ở mẫu, khi đó ta được:
\(\dfrac{a}{a+3\sqrt{bc}}+\dfrac{b}{b+3\sqrt{ca}}+\dfrac{c}{c+3\sqrt{ab}}\ge\) với biểu thức
\(\dfrac{2a}{2a+3b+3c}+\dfrac{2b}{3a+2b+3c}+\dfrac{2c}{3a+3b+2c}\)
Khi đó ta cần chứng minh:
\(\dfrac{2a}{2a+3b+3c}+\dfrac{2b}{3a+2b+3c}+\dfrac{2c}{3a+3b+2c}\ge\dfrac{3}{4}\)
Đặt: \(\left\{{}\begin{matrix}x=2a+3b+3c\\y=3a+2b+3c\\z=3a+3b+2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2a=\dfrac{1}{4}\left(3y+3z-5x\right)\\2b=\dfrac{1}{4}\left(3z+3x-5y\right)\\2c=\dfrac{1}{4}\left(3x+3y-5z\right)\end{matrix}\right.\)
Khi đó đẳng thức trên được viết lại thành:
\(\dfrac{3y+3z-5x}{4x}+\dfrac{3z+3x-5y}{4y}+\dfrac{3x+3y-5z}{4z}\ge\dfrac{3}{4}\)
Hay: \(3\left(\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{x}{z}+\dfrac{z}{x}\right)-15\ge3\)
Bất đẳng thức cuối cùng luôn đúng theo bất đẳng thức Cô si.
Vậy bất đẳng thức được chứng minh. Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)
Đặt \(x=\sqrt{a};y=\sqrt{b};z=\sqrt{c}\)
Khi đó bđt đã tro chở thành:
\(\dfrac{yz}{x^2+3yz}+\dfrac{zx}{y^2+3zx}+\dfrac{xy}{z^2+3xy}\le\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{1}{3}-\dfrac{yz}{x^2+3yz}+\dfrac{1}{3}-\dfrac{zx}{y^2+3zx}+\dfrac{1}{3}-\dfrac{xy}{z^2+3xy}\ge1-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{x^2}{x^2+3yz}+\dfrac{y^2}{y^2+3zx}+\dfrac{z^2}{z^2+3xy}\ge\dfrac{3}{4}\) (đpcm)
Ta có: \(\left\{{}\begin{matrix}3\sqrt{3}a^2+\sqrt{a}+\sqrt{a}\ge3\sqrt{3}a\left(1\right)\\3\sqrt{3}b^2+\sqrt{b}+\sqrt{b}\ge3\sqrt{3}b\left(2\right)\\3\sqrt{3}c^2+\sqrt{c}+\sqrt{c}\ge3\sqrt{3}c\left(3\right)\end{matrix}\right.\)
Cộng (1), (2), (3) vế theo vế ta được
\(2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge3\sqrt{3}\left[\left(a+b+c\right)-\left(a^2+b^2+c^2\right)\right]\)
\(\Leftrightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge\dfrac{3\sqrt{3}\left[1-\left(a^2+b^2+c^2\right)\right]}{2}\)
\(=\dfrac{3\sqrt{3}\left[1-\left(a+b+c\right)^2+2\left(ab+bc+ca\right)\right]}{2}\)
\(=3\sqrt{3}\left(ab+bc+ca\right)\)
\(\RightarrowĐPCM\)
Lời giải:
Do $a+b+c=1$ nên:
\(\text{VT}=\sqrt{\frac{ab}{c(a+b+c)+ab}}+\sqrt{\frac{bc}{a(a+b+c)+bc}}+\sqrt{\frac{ca}{b(a+b+c)+ac}}\)
\(=\sqrt{\frac{ab}{(c+a)(c+b)}}+\sqrt{\frac{bc}{(a+b)(a+c)}}+\sqrt{\frac{ca}{(b+c)(b+a)}}\)
Áp dụng BĐT AM-GM:
\(\sqrt{\frac{ab}{(c+a)(c+b)}}\leq \frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)
\(\sqrt{\frac{bc}{(a+b)(a+c)}}\leq \frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{c+a}\right)\)
\(\sqrt{\frac{ca}{(b+c)(b+a)}}\leq \frac{1}{2}\left(\frac{c}{b+c}+\frac{a}{b+a}\right)\)
Cộng theo vế:
\(\Rightarrow \text{VT}\leq \frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
Áp dụng Cô-si cho 3 số ta có: \(\left\{{}\begin{matrix}a^2+\sqrt{a}+\sqrt{a}\ge3a\\b^2+\sqrt{b}+\sqrt{b}\ge3b\\c^2+\sqrt{c}+\sqrt{c}\ge3c\end{matrix}\right.\)
\(\Rightarrow a^2+b^2+c^2+2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge3\left(a+b+c\right)\)
\(\Rightarrow a^2+b^2+c^2+2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge\left(a+b+c\right)^2\) (thay \(3=a+b+c\))
\(\Rightarrow2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge\left(a+b+c\right)^2-a^2-b^2-c^2=2\left(ab+ac+bc\right)\)
\(\Rightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+ac+bc\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\)
\(\Leftrightarrow2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge2\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge\left(a+b+c\right)^2=3\left(a+b+c\right)\)
Ap dung BDT AM-GM ta co:
\(a^2+\sqrt{a}+\sqrt{a}\ge3a\)
\(b^2+\sqrt{b}+\sqrt{b}\ge3b\)
\(c^2+\sqrt{c}+\sqrt{c}\ge3c\)
Cong theo ve ta co DPCM
Dau "=" xay ra khi \(a=b=c=1\)
Hình như đề bài có vấn đề : thừa đk ab + bc + ac = abc
ta có : \(\frac{\sqrt{b^2+2a^2}}{ab}\ge\frac{\sqrt{4a^2b^2}}{ab}=\frac{2ab}{ab}=2\)
Tương tự \(\frac{\sqrt{c^2+2b^2}}{bc}\ge2\) ; \(\frac{\sqrt{a^2+2c^2}}{ac}\ge2\)
\(\Rightarrow\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ac}\ge2+2+2=6>\sqrt{3}\)
Biểu thức không có giá trị min bạn nhé. Chỉ có giá trị max.
Lời giải:
\(2P=1-\frac{a}{a+2\sqrt{bc}}+1-\frac{b}{b+2\sqrt{ca}}+1-\frac{c}{c+2\sqrt{ab}}\)
\(=3-\left(\frac{a}{a+2\sqrt{bc}}+\frac{b}{b+2\sqrt{ac}}+\frac{c}{c+2\sqrt{ab}}\right)\)
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{a}{a+2\sqrt{bc}}+\frac{b}{b+2\sqrt{ac}}+\frac{c}{c+2\sqrt{ab}}\geq \frac{(\sqrt{a}+\sqrt{b}+\sqrt{c})^2}{a+2\sqrt{bc}+b+2\sqrt{ac}+c+2\sqrt{ab}}=\frac{(\sqrt{a}+\sqrt{b}+\sqrt{c})^2}{(\sqrt{a}+\sqrt{b}+\sqrt{c})^2}=1\)
Do đó: $2P\leq 3-1=2\Rightarrow P\leq 1$
Vậy $P_{\max}=1$ khi $a=b=c$