Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4a^2b^2-\left(a^2+b^2-c^2\right)^2=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)
\(=\left(c^2-\left(a-b\right)^2\right)\left(\left(a+b\right)^2-c^2\right)\)
\(=\left(c-a+b\right)\left(c+a-b\right)\left(a+b-c\right)\left(a+b+c\right)>0\)
(bất đẳng thức tam giác)
\(\Rightarrow\) \(4a^2b^2>\left(a^2+b^2-c^2\right)^2\)
Thấy tao siêu chưa, mới có lớp 6 mà làm được toán lớp 8 nha ( tick nhiều nhiều nha)
thằng dinh quoc anh siêu cái gì! Mày nhờ chị mày làm hộ mà còn vênh vênh váo váo!
\(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2\)
\(=4a^2b^2-\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)\)
\(=4a^2b^2-a^4-b^4-c^4-2a^2b^2+2b^2c^2+2c^2a^2\)
\(=2a^2b^2-a^4-b^4-c^4+2b^2c^2+2c^2a^2\)
\(=-a^4+2a^2b^2-b^4-c^4+2b^2c^2+2c^2a^2\)
\(=-\left(a^2-b^2\right)^2-c^2\left(c^2-2b^2-2a^2\right)>0\)
Vậy A > 0
\(\left(a^2+b^2-c^2\right)^2-4a^2b^2\)
\(=\left(a^2+b^2-c^2\right)^2-\left(2ab\right)^2\)
\(=\left[a^2+b^2-c^2-2ab\right]\left[a^2+b^2-c^2+2ab\right]\)
\(=\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]\)
\(=\left(a-b-c\right)\left(a-b+c\right)\left(a+b+c\right)\left(a+b-c\right)\)
Vì a,b,c là 3 cạnh của 1 tam giác nên theo bất đẳng thức tam giác, ta suy ra:
\(a-b-c< 0,a-b+c>0,a+b-c>0\)
Mặt khác \(a,b,c>0\Rightarrow a+b+c>0\)
\(\Rightarrow\left(a^2+b^2-c^2\right)^2-4a^2b^2=\left(a-b-c\right)\left(a-b+c\right)\left(a+b+c\right)\left(a+b-c\right)< 0\)
\(VT=\left(a^2+b^2-c^2\right)^2-4a^2b^2\)
\(VT=\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)\)
\(VT=\left[\left(a-b\right)^2-c^2\right].\left[\left(a+b\right)^2-c^2\right]\)
\(VT=\left(a-b-c\right)\left(a-b+c\right)\left(a+b-c\right)\left(a+b+c\right)\)
Theo bđt tam giác ta có :
\(a-b< c\)\(\Leftrightarrow\)\(a-b-c< 0\) \(\left(1\right)\)
\(a+b>c\)\(\Leftrightarrow\)\(a+b-c>0\) \(\left(2\right)\)
\(a+c>b\)\(\Leftrightarrow\)\(a-b+c>0\) \(\left(3\right)\)
\(a+b+c>0\) ( vì độ dài không có âm ) \(\left(4\right)\)
Từ (1), (2), (3) và (4) suy ra \(VT< 0\) ( vì tích gồm 1 số âm và 3 số dương )
Vậy với a, b, c là độ dài ba cạnh của một tam giác ta có \(\left(a^2+b^2-c^2\right)^2-4a^2b^2< 0\)
Chúc bạn học tốt ~
Ta có :
\(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2\)
\(=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)
\(=\left[c^2-\left(a^2+b^2-2ab\right)\right]\left[\left(a^2+b^2+2ab\right)-c^2\right]\)
\(=\left[c^2-\left(a-b\right)^2\right]\left[\left(a+b\right)^2-c^2\right]\)
\(=\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\left(a+b+c\right)\)
Áp dụng bất đẳng thức tam giác thì ta có :
\(b+c-a>0\)
\(a+c-b>0\)
\(a+b-c>0\)
Hiển nhiên \(a+b+c>0\)
\(A\)là tích của 4 số dương nên \(A>0.\)
Vậy \(A>0.\)
=(2ab−a2−b2+c2)(2ab+a2+b2−c2)
=[c2−(a2+b2−2ab)][(a2+b2+2ab)−c2]
=[c2−(a−b)2][(a+b)2−c2]
=(b+c−a)(a+c−b)(a+b−c)(a+b+c)
Áp dụng bất đẳng thức tam giác thì ta có :
b+c−a>0
a+c−b>0
a+b−c>0 a+b+c>0
A A là tích của 4 số dương nên A>0.
Vậy A>0.
1) \(x^3-x^2+2x=x\left(x^2-x+2\right)\)bạn xem lại đề xem có sai không nha. chỗ này sau khi thu gọn và cho x ra ngoài thì phải có dạng: \(x\left(x^2-3x+2\right)=x\left(x^2-2x-x+2\right)=x\left(x-1\right)\left(x-2\right)\)hoặc \(x\left(x^2+3x+2\right)=x\left(x^2+2x+x+2\right)=x\left(x+1\right)\left(x+2\right)\)
nó là tích của 3 số tự nhiên liên tiếp => trong đó phỉa có 1 số chia hết cho 2, có một số chia hết cho 3. vì 3,2 ngtố cùng nhau =>tích của 3 số ltiếp sẽ chia hết cho 3.2=6 => chia hết cho 6 với mọi x
2) \(a^2-\left(b^2-2bc+c^2\right)=a^2-\left(b-c\right)^2=\left(a+b-c\right)\left(a-b+c\right)\)
mình làm đến đây thì k biết giải thích sao nữa :( thôi cứ tick đúng cho mình nha
Câu 1 Sai đề. Chỉ cần thay x = 1,2,3 ta thấy ngay sai
Câu 2 sai đề. chứng minh như sau;
Thay a,b,c là số dài 3 cạnh của 1 tam giác đều có cạnh 0,5 (nhỏ hơn 1 là đủ)
\(a^2-\left(b^2-2bc+c^2\right)>c\)\(\Leftrightarrow a^2-\left(b-c\right)^2>c\)
Với a = b = c = 0,5 thì điều trên tương đương \(0,5^2-\left(0,5-0,5\right)^2>0,5\)
\(\Leftrightarrow0,25>0,5\) => vô lí