K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2021

\(A=3\left(1+3+3^2\right)+...+3^{28}\left(1+3+3^2\right)\)

\(=13\left(3+...+3^{28}\right)⋮13\)

30 tháng 12 2021

x∈{−1;−3;0;−4;1;−5;4;−8}

 

17 tháng 10 2017

a)\(2^{29}+2^{30}=2^{29}\left(1+2\right)=2^{29}.3⋮3\)

Vậy \(2^{29}+2^{30}⋮3\)

17 tháng 10 2017

B nữa bạn c luôn

21 tháng 12 2016

A = 3 + 32 + 33 + 34 + ... + 32015 + 32016

A = (3 + 32) + (33 + 34) + ... + (32015 + 32016)

A = 3(1 + 3) + 33(1 + 3) + ... + 32015(1 + 3)

A = 3.4 + 33.4 + ... + 32015.4

A = 4(3 + 33 + ... + 32015)

Vì 4(3 + 33 + ... + 32015) \(⋮\) 4 nên A \(⋮\) 4

Vậy A \(⋮\) 4

A = 3 + 32 + 33 + 34 + ... + 32015 + 32016

A = (3 + 32 + 33) + (34 + 35 + 36) + ... + (32014 + 32015 + 32016)

A = 3(1 + 3 + 32) + 34(1 + 3 + 32) + ... + 32014(1 + 3 + 32)

A = 3.13 + 34.13 + ... + 32014.13

A = 13(3 + 34 + ... + 32014)

Vì 13(3 + 34 + ... + 32014) \(⋮\) 13 nên A \(⋮\) 13

Vậy A \(⋮\) 13

21 tháng 12 2016

thanks

 

28 tháng 9 2021

A=1+3+3^2+3^3+...+3^101

A=(1+3+3^2)+(3^3+3^4+3^5)+...+(3^99+3^100+3^101)

A=13.1+13.3^3+...+13.3^99

A=13(1+33+....+399)

⇒13(1+3^3+....+399) chia hết cho 13(đpcm)

16 tháng 10 2021

\(B=3+3^2+3^3+....+3^{120}\)

a, Ta thấy : Cách số hạng của B đều chi hết cho 3 

\(B=3+3^2+3^3+....+3^{120}⋮3\)

\(b,B=3+3^2+3^3+....+3^{120}\)

\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{119}+3^{120}\right)\)

\(B=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)

\(B=3.4+3^3.4+...+3^{119}.4\)

\(B=4\left(3+3^3+...+3^{199}\right)\)

Có : \(B=4\left(3+3^3+...+3^{199}\right)⋮4\)

\(\Rightarrow B⋮4\)

\(c,B=3+3^2+3^3+....+3^{120}\)

\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{119}+3^{120}\right)\)

\(B=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{118}\left(3+3^2\right)\)

\(B=13+3^2.13+...+3^{118}.13\)

\(B=13\left(3^2+3^4+...+3^{118}\right)\)

Có : \(B=13\left(3^2+3^4+...+3^{118}\right)⋮13\)

\(\Rightarrow B⋮13\)

28 tháng 11 2024

lạnh quá đừng ra đề nx

 

13 tháng 10 2017

M = 3[1+3+9] + 3\(^4\)[1+3+9] +...+3\(^{28}\)[1+3+9] = 26.[1+ 3\(^4\)+... 3\(^{28}\)]

do 26 chia hết cho 13 => M chia hết cho 13

8 tháng 12 2016

A= 1+3+3^2+3^3+...+3^11

  =(1+3)+(3^2+3^3)+...+(3^10+3^11)

  =4+3^2(4)+...+3^10(4)

  =4(1+3^2+...+3^10)

11 tháng 12 2016

a) A= (1+3)+(3^2+3^3)+.....+ ( 3^10 + 3^11)

A= 1. ( 1+ 3) + 3^2. ( 1+ 3) +.....+ 3^10. (1+3)

A= 1.4+3^2.4+...+3^10.4

A= 4. ( 1+ 3^2+...+ 3^10) chia hết cho 4

Vậy A chia hết cho 4

b) B= (2^4)^5 + 2^15

B= 2^ 20+ 2^15

B= 2^15.2^5+2^15

B= 2^15. (2^5 +1)

B= 2^15.33 chia hết cho 33

Vậy B chia hết cho 33

c) C= 5+5^2+5^3+....+5^8 chia hết cho 5 (1)

C= 5+ 5^2 +5^3+.....+5^8

C= (5+5^2)+(5^3+5^4)+...+(5^7+5^8)

C= 5. (1+5) + 5^3. (1+5) +....+ 5^7.(1+5)

C= 5.6+5^3.6+...+5^7.6 chia hết cho 6

mà 5 và 6 là hai số nguyên tố cùng nhau 

suy ra C chia hết cho 30

Vậy C chia hết cho 30

d) 5.9+11.9+9.20= 9. (5+11+20) chia hết cho 9

Vậy D chia hết cho 9

e) E= (1+3+ 3^2) + (3^3+3^4+3^5) +....+ (3^117+3^118+3^119)

E= 1.(1+3+3^2) + 3^3.(1+3+3^2) +....+ 3^117.(1+3+3^2)

E= 1.13+3^3.13+...+ 3^117.13

E= 13. ( 1+3^3+...+3^117) chia hết cho 13

Vậy E chia hết cho 13

f) Ta có: 10^28= 100.....000 ( có 28 chữ số 0)

thay 100...00 vào 10^28 ta được:

1000....00+8= 1000...008 chia hết cho 3 và 9 vì tổng các chữ số của 100...008 bằng 9

mà 3 và 9 là hai số nguyên tố cùng nhau 

suy ra F chia hết cho 27

Vậy F chia hết cho 27

g) G= (2^3)^8 + 2^20

G= 2^24 + 2^20

G= 2^20 . 2^4 + 2^20

G= 2^20. (2^4+1)

G= 2^20. 17 chia hết cho 17

Vậy G chia hết cho 17

Nếu các bạn thầy hay thì (k) đúng cho mình nhé! thank you very much

10 tháng 9 2016

( 1+2+22+23+.......+299+2100 ) (34.25+34.7-17.64)

Ta có : 

34.25+34.7-17.64  = 34.(25+7)-(17.64)

=34.32 - 17.64

= 1088-1088

=0

Thay 0 và 34.25+34.7-17.64

Ta đc : 

( 1+2+22+23+.......+299+2100 ) .0

=0

Tìm x : 

3+(2x-1)=24-[42-(22-1)]

=> 3+2x-1=11

=> 2x-1=11-3

=> 2x-1=8

Mà:  8=23

=> x-1 = 3

=> x=4

10 tháng 9 2016

 x  = 1+3+32+33+34+.......+399

=> 3x=3+32+33+34+.......+399

=> 3x-x=2x=(3+32+33+34+.......+3100)-(1+3+32+33+34+.......+399)

=> 2x=3100-1

=> x=(3100-1)/2